MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrissmrid Structured version   Visualization version   GIF version

Theorem mrissmrid 16474
Description: In a Moore system, subsets of independent sets are independent. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrissmrid.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mrissmrid.2 𝑁 = (mrCls‘𝐴)
mrissmrid.3 𝐼 = (mrInd‘𝐴)
mrissmrid.4 (𝜑𝑆𝐼)
mrissmrid.5 (𝜑𝑇𝑆)
Assertion
Ref Expression
mrissmrid (𝜑𝑇𝐼)

Proof of Theorem mrissmrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mrissmrid.2 . 2 𝑁 = (mrCls‘𝐴)
2 mrissmrid.3 . 2 𝐼 = (mrInd‘𝐴)
3 mrissmrid.1 . 2 (𝜑𝐴 ∈ (Moore‘𝑋))
4 mrissmrid.5 . . 3 (𝜑𝑇𝑆)
5 mrissmrid.4 . . . 4 (𝜑𝑆𝐼)
62, 3, 5mrissd 16469 . . 3 (𝜑𝑆𝑋)
74, 6sstrd 3742 . 2 (𝜑𝑇𝑋)
81, 2, 3, 6ismri2d 16466 . . . 4 (𝜑 → (𝑆𝐼 ↔ ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))))
95, 8mpbid 222 . . 3 (𝜑 → ∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})))
104sseld 3731 . . . . 5 (𝜑 → (𝑥𝑇𝑥𝑆))
114ssdifd 3877 . . . . . . 7 (𝜑 → (𝑇 ∖ {𝑥}) ⊆ (𝑆 ∖ {𝑥}))
126ssdifssd 3879 . . . . . . 7 (𝜑 → (𝑆 ∖ {𝑥}) ⊆ 𝑋)
133, 1, 11, 12mrcssd 16457 . . . . . 6 (𝜑 → (𝑁‘(𝑇 ∖ {𝑥})) ⊆ (𝑁‘(𝑆 ∖ {𝑥})))
1413ssneld 3734 . . . . 5 (𝜑 → (¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))
1510, 14imim12d 81 . . . 4 (𝜑 → ((𝑥𝑆 → ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥}))) → (𝑥𝑇 → ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))))
1615ralimdv2 3087 . . 3 (𝜑 → (∀𝑥𝑆 ¬ 𝑥 ∈ (𝑁‘(𝑆 ∖ {𝑥})) → ∀𝑥𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥}))))
179, 16mpd 15 . 2 (𝜑 → ∀𝑥𝑇 ¬ 𝑥 ∈ (𝑁‘(𝑇 ∖ {𝑥})))
181, 2, 3, 7, 17ismri2dd 16467 1 (𝜑𝑇𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1620  wcel 2127  wral 3038  cdif 3700  wss 3703  {csn 4309  cfv 6037  Moorecmre 16415  mrClscmrc 16416  mrIndcmri 16417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-int 4616  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-fv 6045  df-mre 16419  df-mrc 16420  df-mri 16421
This theorem is referenced by:  mreexexlem2d  16478  acsfiindd  17349
  Copyright terms: Public domain W3C validator