MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcompq Structured version   Visualization version   GIF version

Theorem mulcompq 10376
Description: Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.)
Assertion
Ref Expression
mulcompq (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)

Proof of Theorem mulcompq
StepHypRef Expression
1 mulcompi 10320 . . . 4 ((1st𝐴) ·N (1st𝐵)) = ((1st𝐵) ·N (1st𝐴))
2 mulcompi 10320 . . . 4 ((2nd𝐴) ·N (2nd𝐵)) = ((2nd𝐵) ·N (2nd𝐴))
31, 2opeq12i 4810 . . 3 ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩ = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩
4 mulpipq2 10363 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = ⟨((1st𝐴) ·N (1st𝐵)), ((2nd𝐴) ·N (2nd𝐵))⟩)
5 mulpipq2 10363 . . . 4 ((𝐵 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩)
65ancoms 461 . . 3 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐵 ·pQ 𝐴) = ⟨((1st𝐵) ·N (1st𝐴)), ((2nd𝐵) ·N (2nd𝐴))⟩)
73, 4, 63eqtr4a 2884 . 2 ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴))
8 mulpqf 10370 . . . 4 ·pQ :((N × N) × (N × N))⟶(N × N)
98fdmi 6526 . . 3 dom ·pQ = ((N × N) × (N × N))
109ndmovcom 7337 . 2 (¬ (𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴))
117, 10pm2.61i 184 1 (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1537  wcel 2114  cop 4575   × cxp 5555  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  Ncnpi 10268   ·N cmi 10270   ·pQ cmpq 10273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-omul 8109  df-ni 10296  df-mi 10298  df-mpq 10333
This theorem is referenced by:  mulcomnq  10377  mulerpq  10381
  Copyright terms: Public domain W3C validator