MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omsmo Structured version   Visualization version   GIF version

Theorem omsmo 7903
Description: A strictly monotonic ordinal function on the set of natural numbers is one-to-one. (Contributed by NM, 30-Nov-2003.) (Revised by David Abernethy, 1-Jan-2014.)
Assertion
Ref Expression
omsmo (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)
Distinct variable group:   𝑥,𝐹
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem omsmo
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 809 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω⟶𝐴)
2 omsmolem 7902 . . . . . . . . 9 (𝑧 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧))))
32adantl 473 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧))))
43imp 444 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → (𝑦𝑧 → (𝐹𝑦) ∈ (𝐹𝑧)))
5 omsmolem 7902 . . . . . . . . 9 (𝑦 ∈ ω → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
65adantr 472 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦))))
76imp 444 . . . . . . 7 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → (𝑧𝑦 → (𝐹𝑧) ∈ (𝐹𝑦)))
84, 7orim12d 919 . . . . . 6 (((𝑦 ∈ ω ∧ 𝑧 ∈ ω) ∧ ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥))) → ((𝑦𝑧𝑧𝑦) → ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
98ancoms 468 . . . . 5 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝑦𝑧𝑧𝑦) → ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
109con3d 148 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦)) → ¬ (𝑦𝑧𝑧𝑦)))
11 ffvelrn 6520 . . . . . . . . . . 11 ((𝐹:ω⟶𝐴𝑦 ∈ ω) → (𝐹𝑦) ∈ 𝐴)
12 ssel 3738 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹𝑦) ∈ 𝐴 → (𝐹𝑦) ∈ On))
1311, 12syl5 34 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑦 ∈ ω) → (𝐹𝑦) ∈ On))
1413expdimp 452 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑦 ∈ ω → (𝐹𝑦) ∈ On))
15 eloni 5894 . . . . . . . . 9 ((𝐹𝑦) ∈ On → Ord (𝐹𝑦))
1614, 15syl6 35 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑦 ∈ ω → Ord (𝐹𝑦)))
17 ffvelrn 6520 . . . . . . . . . . 11 ((𝐹:ω⟶𝐴𝑧 ∈ ω) → (𝐹𝑧) ∈ 𝐴)
18 ssel 3738 . . . . . . . . . . 11 (𝐴 ⊆ On → ((𝐹𝑧) ∈ 𝐴 → (𝐹𝑧) ∈ On))
1917, 18syl5 34 . . . . . . . . . 10 (𝐴 ⊆ On → ((𝐹:ω⟶𝐴𝑧 ∈ ω) → (𝐹𝑧) ∈ On))
2019expdimp 452 . . . . . . . . 9 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑧 ∈ ω → (𝐹𝑧) ∈ On))
21 eloni 5894 . . . . . . . . 9 ((𝐹𝑧) ∈ On → Ord (𝐹𝑧))
2220, 21syl6 35 . . . . . . . 8 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → (𝑧 ∈ ω → Ord (𝐹𝑧)))
2316, 22anim12d 587 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) → ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (Ord (𝐹𝑦) ∧ Ord (𝐹𝑧))))
2423imp 444 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (Ord (𝐹𝑦) ∧ Ord (𝐹𝑧)))
25 ordtri3 5920 . . . . . 6 ((Ord (𝐹𝑦) ∧ Ord (𝐹𝑧)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
2624, 25syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
2726adantlr 753 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) ↔ ¬ ((𝐹𝑦) ∈ (𝐹𝑧) ∨ (𝐹𝑧) ∈ (𝐹𝑦))))
28 nnord 7238 . . . . . 6 (𝑦 ∈ ω → Ord 𝑦)
29 nnord 7238 . . . . . 6 (𝑧 ∈ ω → Ord 𝑧)
30 ordtri3 5920 . . . . . 6 ((Ord 𝑦 ∧ Ord 𝑧) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3128, 29, 30syl2an 495 . . . . 5 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3231adantl 473 . . . 4 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → (𝑦 = 𝑧 ↔ ¬ (𝑦𝑧𝑧𝑦)))
3310, 27, 323imtr4d 283 . . 3 ((((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) ∧ (𝑦 ∈ ω ∧ 𝑧 ∈ ω)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
3433ralrimivva 3109 . 2 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
35 dff13 6675 . 2 (𝐹:ω–1-1𝐴 ↔ (𝐹:ω⟶𝐴 ∧ ∀𝑦 ∈ ω ∀𝑧 ∈ ω ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
361, 34, 35sylanbrc 701 1 (((𝐴 ⊆ On ∧ 𝐹:ω⟶𝐴) ∧ ∀𝑥 ∈ ω (𝐹𝑥) ∈ (𝐹‘suc 𝑥)) → 𝐹:ω–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715  Ord word 5883  Oncon0 5884  suc csuc 5886  wf 6045  1-1wf1 6046  cfv 6049  ωcom 7230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fv 6057  df-om 7231
This theorem is referenced by:  unblem4  8380
  Copyright terms: Public domain W3C validator