MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omopthlem1 Structured version   Visualization version   GIF version

Theorem omopthlem1 8282
Description: Lemma for omopthi 8284. (Contributed by Scott Fenton, 18-Apr-2012.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
omopthlem1.1 𝐴 ∈ ω
omopthlem1.2 𝐶 ∈ ω
Assertion
Ref Expression
omopthlem1 (𝐴𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶))

Proof of Theorem omopthlem1
StepHypRef Expression
1 omopthlem1.1 . . . . 5 𝐴 ∈ ω
2 peano2 7602 . . . . 5 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
31, 2ax-mp 5 . . . 4 suc 𝐴 ∈ ω
4 omopthlem1.2 . . . 4 𝐶 ∈ ω
5 nnmwordi 8261 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ suc 𝐴 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (suc 𝐴 ·o 𝐶)))
63, 4, 3, 5mp3an 1457 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (suc 𝐴 ·o 𝐶))
7 nnmwordri 8262 . . . 4 ((suc 𝐴 ∈ ω ∧ 𝐶 ∈ ω ∧ 𝐶 ∈ ω) → (suc 𝐴𝐶 → (suc 𝐴 ·o 𝐶) ⊆ (𝐶 ·o 𝐶)))
83, 4, 4, 7mp3an 1457 . . 3 (suc 𝐴𝐶 → (suc 𝐴 ·o 𝐶) ⊆ (𝐶 ·o 𝐶))
96, 8sstrd 3977 . 2 (suc 𝐴𝐶 → (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
101nnoni 7587 . . 3 𝐴 ∈ On
114nnoni 7587 . . 3 𝐶 ∈ On
1210, 11onsucssi 7556 . 2 (𝐴𝐶 ↔ suc 𝐴𝐶)
131, 1nnmcli 8241 . . . . . 6 (𝐴 ·o 𝐴) ∈ ω
14 2onn 8266 . . . . . . 7 2o ∈ ω
151, 14nnmcli 8241 . . . . . 6 (𝐴 ·o 2o) ∈ ω
1613, 15nnacli 8240 . . . . 5 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ ω
1716nnoni 7587 . . . 4 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ On
184, 4nnmcli 8241 . . . . 5 (𝐶 ·o 𝐶) ∈ ω
1918nnoni 7587 . . . 4 (𝐶 ·o 𝐶) ∈ On
2017, 19onsucssi 7556 . . 3 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶) ↔ suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ⊆ (𝐶 ·o 𝐶))
213, 1nnmcli 8241 . . . . . 6 (suc 𝐴 ·o 𝐴) ∈ ω
22 nnasuc 8232 . . . . . 6 (((suc 𝐴 ·o 𝐴) ∈ ω ∧ 𝐴 ∈ ω) → ((suc 𝐴 ·o 𝐴) +o suc 𝐴) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴))
2321, 1, 22mp2an 690 . . . . 5 ((suc 𝐴 ·o 𝐴) +o suc 𝐴) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴)
24 nnmsuc 8233 . . . . . 6 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·o suc 𝐴) = ((suc 𝐴 ·o 𝐴) +o suc 𝐴))
253, 1, 24mp2an 690 . . . . 5 (suc 𝐴 ·o suc 𝐴) = ((suc 𝐴 ·o 𝐴) +o suc 𝐴)
26 nnaass 8248 . . . . . . . 8 (((𝐴 ·o 𝐴) ∈ ω ∧ 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴)))
2713, 1, 1, 26mp3an 1457 . . . . . . 7 (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴))
28 nnmcom 8252 . . . . . . . . . 10 ((suc 𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (suc 𝐴 ·o 𝐴) = (𝐴 ·o suc 𝐴))
293, 1, 28mp2an 690 . . . . . . . . 9 (suc 𝐴 ·o 𝐴) = (𝐴 ·o suc 𝐴)
30 nnmsuc 8233 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝐴 ∈ ω) → (𝐴 ·o suc 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴))
311, 1, 30mp2an 690 . . . . . . . . 9 (𝐴 ·o suc 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴)
3229, 31eqtri 2844 . . . . . . . 8 (suc 𝐴 ·o 𝐴) = ((𝐴 ·o 𝐴) +o 𝐴)
3332oveq1i 7166 . . . . . . 7 ((suc 𝐴 ·o 𝐴) +o 𝐴) = (((𝐴 ·o 𝐴) +o 𝐴) +o 𝐴)
34 nnm2 8276 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ·o 2o) = (𝐴 +o 𝐴))
351, 34ax-mp 5 . . . . . . . 8 (𝐴 ·o 2o) = (𝐴 +o 𝐴)
3635oveq2i 7167 . . . . . . 7 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((𝐴 ·o 𝐴) +o (𝐴 +o 𝐴))
3727, 33, 363eqtr4ri 2855 . . . . . 6 ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((suc 𝐴 ·o 𝐴) +o 𝐴)
38 suceq 6256 . . . . . 6 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = ((suc 𝐴 ·o 𝐴) +o 𝐴) → suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴))
3937, 38ax-mp 5 . . . . 5 suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = suc ((suc 𝐴 ·o 𝐴) +o 𝐴)
4023, 25, 393eqtr4ri 2855 . . . 4 suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) = (suc 𝐴 ·o suc 𝐴)
4140sseq1i 3995 . . 3 (suc ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ⊆ (𝐶 ·o 𝐶) ↔ (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
4220, 41bitri 277 . 2 (((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶) ↔ (suc 𝐴 ·o suc 𝐴) ⊆ (𝐶 ·o 𝐶))
439, 12, 423imtr4i 294 1 (𝐴𝐶 → ((𝐴 ·o 𝐴) +o (𝐴 ·o 2o)) ∈ (𝐶 ·o 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3936  suc csuc 6193  (class class class)co 7156  ωcom 7580  2oc2o 8096   +o coa 8099   ·o comu 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107
This theorem is referenced by:  omopthlem2  8283
  Copyright terms: Public domain W3C validator