MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnneissb Structured version   Visualization version   GIF version

Theorem opnneissb 21722
Description: An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
Hypothesis
Ref Expression
neips.1 𝑋 = 𝐽
Assertion
Ref Expression
opnneissb ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))

Proof of Theorem opnneissb
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 neips.1 . . . . . . 7 𝑋 = 𝐽
21eltopss 21515 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑁𝐽) → 𝑁𝑋)
32adantr 483 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁𝑋)
4 ssid 3989 . . . . . . 7 𝑁𝑁
5 sseq2 3993 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑆𝑔𝑆𝑁))
6 sseq1 3992 . . . . . . . . 9 (𝑔 = 𝑁 → (𝑔𝑁𝑁𝑁))
75, 6anbi12d 632 . . . . . . . 8 (𝑔 = 𝑁 → ((𝑆𝑔𝑔𝑁) ↔ (𝑆𝑁𝑁𝑁)))
87rspcev 3623 . . . . . . 7 ((𝑁𝐽 ∧ (𝑆𝑁𝑁𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
94, 8mpanr2 702 . . . . . 6 ((𝑁𝐽𝑆𝑁) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
109ad2ant2l 744 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
111isnei 21711 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1211ad2ant2r 745 . . . . 5 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
133, 10, 12mpbir2and 711 . . . 4 (((𝐽 ∈ Top ∧ 𝑁𝐽) ∧ (𝑆𝑋𝑆𝑁)) → 𝑁 ∈ ((nei‘𝐽)‘𝑆))
1413exp43 439 . . 3 (𝐽 ∈ Top → (𝑁𝐽 → (𝑆𝑋 → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))))
15143imp 1107 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
16 ssnei 21718 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑁)
1716ex 415 . . 3 (𝐽 ∈ Top → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
18173ad2ant1 1129 . 2 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆𝑁))
1915, 18impbid 214 1 ((𝐽 ∈ Top ∧ 𝑁𝐽𝑆𝑋) → (𝑆𝑁𝑁 ∈ ((nei‘𝐽)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  wss 3936   cuni 4838  cfv 6355  Topctop 21501  neicnei 21705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-top 21502  df-nei 21706
This theorem is referenced by:  opnneiss  21726
  Copyright terms: Public domain W3C validator