Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2cv Structured version   Visualization version   GIF version

Theorem pr2cv 39956
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pr2cv ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem pr2cv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 en2 8754 . 2 ({𝐴, 𝐵} ≈ 2o → ∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦})
2 breq1 5069 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
3 vex 3497 . . . . . . 7 𝑥 ∈ V
4 vex 3497 . . . . . . 7 𝑦 ∈ V
5 pr2ne 9431 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3501 . . . . . . . 8 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
76biimpi 218 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
8 preq12nebg 4793 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴))))
9 eqvisset 3511 . . . . . . . . . 10 (𝑥 = 𝐴𝐴 ∈ V)
10 eqvisset 3511 . . . . . . . . . 10 (𝑦 = 𝐵𝐵 ∈ V)
119, 10anim12i 614 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
12 eqvisset 3511 . . . . . . . . . 10 (𝑥 = 𝐵𝐵 ∈ V)
13 eqvisset 3511 . . . . . . . . . 10 (𝑦 = 𝐴𝐴 ∈ V)
1412, 13anim12ci 615 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1511, 14jaoi 853 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
168, 15syl6bi 255 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
173, 4, 7, 16mp3an12i 1461 . . . . . 6 ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1817com12 32 . . . . 5 ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1918eqcoms 2829 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
202, 19sylbid 242 . . 3 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
2120exlimivv 1933 . 2 (∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
221, 21mpcom 38 1 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3016  Vcvv 3494  {cpr 4569   class class class wbr 5066  2oc2o 8096  cen 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-2o 8103  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513
This theorem is referenced by:  pr2el1  39957  pr2cv1  39958  pr2el2  39959  pr2cv2  39960  pren2  39961
  Copyright terms: Public domain W3C validator