MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptbasin Structured version   Visualization version   GIF version

Theorem ptbasin 21580
Description: The basis for a product topology is closed under intersections. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptbasin (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝑧,𝐴   𝑔,𝑌,𝑥   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑋,𝑥,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝑋(𝑦)   𝑌(𝑦,𝑧)

Proof of Theorem ptbasin
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptbas.1 . . . . . 6 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21elpt 21575 . . . . 5 (𝑋𝐵 ↔ ∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)))
31elpt 21575 . . . . 5 (𝑌𝐵 ↔ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)))
42, 3anbi12i 735 . . . 4 ((𝑋𝐵𝑌𝐵) ↔ (∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
5 eeanv 2325 . . . 4 (∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) ↔ (∃𝑎((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ∃𝑏((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
64, 5bitr4i 267 . . 3 ((𝑋𝐵𝑌𝐵) ↔ ∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
7 an4 900 . . . . 5 ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) ↔ (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ∧ (𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))))
8 an6 1555 . . . . . . . . 9 (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ ((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
9 df-3an 1074 . . . . . . . . 9 (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
108, 9bitri 264 . . . . . . . 8 (((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ↔ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))))
11 reeanv 3243 . . . . . . . . . . 11 (∃𝑐 ∈ Fin ∃𝑑 ∈ Fin (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ↔ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))
12 fveq2 6350 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑎𝑦) = (𝑎𝑘))
13 fveq2 6350 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑘 → (𝑏𝑦) = (𝑏𝑘))
1412, 13ineq12d 3956 . . . . . . . . . . . . . . 15 (𝑦 = 𝑘 → ((𝑎𝑦) ∩ (𝑏𝑦)) = ((𝑎𝑘) ∩ (𝑏𝑘)))
1514cbvixpv 8090 . . . . . . . . . . . . . 14 X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) = X𝑘𝐴 ((𝑎𝑘) ∩ (𝑏𝑘))
16 simpl1l 1279 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → 𝐴𝑉)
17 unfi 8390 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) → (𝑐𝑑) ∈ Fin)
1817ad2antrl 766 . . . . . . . . . . . . . . 15 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → (𝑐𝑑) ∈ Fin)
19 simpl1r 1281 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → 𝐹:𝐴⟶Top)
2019ffvelrnda 6520 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ Top)
21 simpl3l 1287 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦))
22 fveq2 6350 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
2312, 22eleq12d 2831 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑎𝑦) ∈ (𝐹𝑦) ↔ (𝑎𝑘) ∈ (𝐹𝑘)))
2423rspccva 3446 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ 𝑘𝐴) → (𝑎𝑘) ∈ (𝐹𝑘))
2521, 24sylan 489 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝑎𝑘) ∈ (𝐹𝑘))
26 simpl3r 1289 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))
2713, 22eleq12d 2831 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑏𝑦) ∈ (𝐹𝑦) ↔ (𝑏𝑘) ∈ (𝐹𝑘)))
2827rspccva 3446 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ 𝑘𝐴) → (𝑏𝑘) ∈ (𝐹𝑘))
2926, 28sylan 489 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → (𝑏𝑘) ∈ (𝐹𝑘))
30 inopn 20904 . . . . . . . . . . . . . . . 16 (((𝐹𝑘) ∈ Top ∧ (𝑎𝑘) ∈ (𝐹𝑘) ∧ (𝑏𝑘) ∈ (𝐹𝑘)) → ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ (𝐹𝑘))
3120, 25, 29, 30syl3anc 1477 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘𝐴) → ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ (𝐹𝑘))
32 simprrl 823 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦))
33 ssun1 3917 . . . . . . . . . . . . . . . . . . . 20 𝑐 ⊆ (𝑐𝑑)
34 sscon 3885 . . . . . . . . . . . . . . . . . . . 20 (𝑐 ⊆ (𝑐𝑑) → (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑐))
3533, 34ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑐)
3635sseli 3738 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝐴 ∖ (𝑐𝑑)) → 𝑘 ∈ (𝐴𝑐))
3722unieqd 4596 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
3812, 37eqeq12d 2773 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → ((𝑎𝑦) = (𝐹𝑦) ↔ (𝑎𝑘) = (𝐹𝑘)))
3938rspccva 3446 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ 𝑘 ∈ (𝐴𝑐)) → (𝑎𝑘) = (𝐹𝑘))
4032, 36, 39syl2an 495 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → (𝑎𝑘) = (𝐹𝑘))
41 simprrr 824 . . . . . . . . . . . . . . . . . 18 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))
42 ssun2 3918 . . . . . . . . . . . . . . . . . . . 20 𝑑 ⊆ (𝑐𝑑)
43 sscon 3885 . . . . . . . . . . . . . . . . . . . 20 (𝑑 ⊆ (𝑐𝑑) → (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑑))
4442, 43ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∖ (𝑐𝑑)) ⊆ (𝐴𝑑)
4544sseli 3738 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝐴 ∖ (𝑐𝑑)) → 𝑘 ∈ (𝐴𝑑))
4613, 37eqeq12d 2773 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑘 → ((𝑏𝑦) = (𝐹𝑦) ↔ (𝑏𝑘) = (𝐹𝑘)))
4746rspccva 3446 . . . . . . . . . . . . . . . . . 18 ((∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦) ∧ 𝑘 ∈ (𝐴𝑑)) → (𝑏𝑘) = (𝐹𝑘))
4841, 45, 47syl2an 495 . . . . . . . . . . . . . . . . 17 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → (𝑏𝑘) = (𝐹𝑘))
4940, 48ineq12d 3956 . . . . . . . . . . . . . . . 16 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → ((𝑎𝑘) ∩ (𝑏𝑘)) = ( (𝐹𝑘) ∩ (𝐹𝑘)))
50 inidm 3963 . . . . . . . . . . . . . . . 16 ( (𝐹𝑘) ∩ (𝐹𝑘)) = (𝐹𝑘)
5149, 50syl6eq 2808 . . . . . . . . . . . . . . 15 (((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) ∧ 𝑘 ∈ (𝐴 ∖ (𝑐𝑑))) → ((𝑎𝑘) ∩ (𝑏𝑘)) = (𝐹𝑘))
521, 16, 18, 31, 51elptr2 21577 . . . . . . . . . . . . . 14 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑘𝐴 ((𝑎𝑘) ∩ (𝑏𝑘)) ∈ 𝐵)
5315, 52syl5eqel 2841 . . . . . . . . . . . . 13 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ ((𝑐 ∈ Fin ∧ 𝑑 ∈ Fin) ∧ (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
5453expr 644 . . . . . . . . . . . 12 ((((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (𝑐 ∈ Fin ∧ 𝑑 ∈ Fin)) → ((∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5554rexlimdvva 3174 . . . . . . . . . . 11 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) → (∃𝑐 ∈ Fin ∃𝑑 ∈ Fin (∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5611, 55syl5bir 233 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) → ((∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
57563expb 1114 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦)))) → ((∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
5857impr 650 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (((𝑎 Fn 𝐴𝑏 Fn 𝐴) ∧ (∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦))) ∧ (∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
5910, 58sylan2b 493 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵)
60 ineq12 3950 . . . . . . . . 9 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) = (X𝑦𝐴 (𝑎𝑦) ∩ X𝑦𝐴 (𝑏𝑦)))
61 ixpin 8097 . . . . . . . . 9 X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) = (X𝑦𝐴 (𝑎𝑦) ∩ X𝑦𝐴 (𝑏𝑦))
6260, 61syl6eqr 2810 . . . . . . . 8 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) = X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)))
6362eleq1d 2822 . . . . . . 7 ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → ((𝑋𝑌) ∈ 𝐵X𝑦𝐴 ((𝑎𝑦) ∩ (𝑏𝑦)) ∈ 𝐵))
6459, 63syl5ibrcom 237 . . . . . 6 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ ((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)))) → ((𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦)) → (𝑋𝑌) ∈ 𝐵))
6564expimpd 630 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ (𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦))) ∧ (𝑋 = X𝑦𝐴 (𝑎𝑦) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
667, 65syl5bi 232 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → ((((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
6766exlimdvv 2009 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃𝑎𝑏(((𝑎 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑎𝑦) ∈ (𝐹𝑦) ∧ ∃𝑐 ∈ Fin ∀𝑦 ∈ (𝐴𝑐)(𝑎𝑦) = (𝐹𝑦)) ∧ 𝑋 = X𝑦𝐴 (𝑎𝑦)) ∧ ((𝑏 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑏𝑦) ∈ (𝐹𝑦) ∧ ∃𝑑 ∈ Fin ∀𝑦 ∈ (𝐴𝑑)(𝑏𝑦) = (𝐹𝑦)) ∧ 𝑌 = X𝑦𝐴 (𝑏𝑦))) → (𝑋𝑌) ∈ 𝐵))
686, 67syl5bi 232 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → ((𝑋𝐵𝑌𝐵) → (𝑋𝑌) ∈ 𝐵))
6968imp 444 1 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1630  wex 1851  wcel 2137  {cab 2744  wral 3048  wrex 3049  cdif 3710  cun 3711  cin 3712  wss 3713   cuni 4586   Fn wfn 6042  wf 6043  cfv 6047  Xcixp 8072  Fincfn 8119  Topctop 20898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-oadd 7731  df-er 7909  df-ixp 8073  df-en 8120  df-fin 8123  df-top 20899
This theorem is referenced by:  ptbasin2  21581
  Copyright terms: Public domain W3C validator