MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfi Structured version   Visualization version   GIF version

Theorem unfi 8268
Description: The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.)
Assertion
Ref Expression
unfi ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)

Proof of Theorem unfi
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diffi 8233 . 2 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2 reeanv 3136 . . . 4 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
3 isfi 8021 . . . . 5 (𝐴 ∈ Fin ↔ ∃𝑥 ∈ ω 𝐴𝑥)
4 isfi 8021 . . . . 5 ((𝐵𝐴) ∈ Fin ↔ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦)
53, 4anbi12i 733 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) ↔ (∃𝑥 ∈ ω 𝐴𝑥 ∧ ∃𝑦 ∈ ω (𝐵𝐴) ≈ 𝑦))
62, 5bitr4i 267 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) ↔ (𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin))
7 nnacl 7736 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 +𝑜 𝑦) ∈ ω)
8 unfilem3 8267 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥))
9 entr 8049 . . . . . . . 8 (((𝐵𝐴) ≈ 𝑦𝑦 ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) → (𝐵𝐴) ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥))
109expcom 450 . . . . . . 7 (𝑦 ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥)))
118, 10syl 17 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐵𝐴) ≈ 𝑦 → (𝐵𝐴) ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥)))
12 disjdif 4073 . . . . . . . 8 (𝐴 ∩ (𝐵𝐴)) = ∅
13 disjdif 4073 . . . . . . . 8 (𝑥 ∩ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) = ∅
14 unen 8081 . . . . . . . 8 (((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) ∧ ((𝐴 ∩ (𝐵𝐴)) = ∅ ∧ (𝑥 ∩ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) = ∅)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +𝑜 𝑦) ∖ 𝑥)))
1512, 13, 14mpanr12 721 . . . . . . 7 ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) → (𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +𝑜 𝑦) ∖ 𝑥)))
16 undif2 4077 . . . . . . . . 9 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
1716a1i 11 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵))
18 nnaword1 7754 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → 𝑥 ⊆ (𝑥 +𝑜 𝑦))
19 undif 4082 . . . . . . . . 9 (𝑥 ⊆ (𝑥 +𝑜 𝑦) ↔ (𝑥 ∪ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) = (𝑥 +𝑜 𝑦))
2018, 19sylib 208 . . . . . . . 8 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ∪ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) = (𝑥 +𝑜 𝑦))
2117, 20breq12d 4698 . . . . . . 7 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 ∪ (𝐵𝐴)) ≈ (𝑥 ∪ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) ↔ (𝐴𝐵) ≈ (𝑥 +𝑜 𝑦)))
2215, 21syl5ib 234 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ ((𝑥 +𝑜 𝑦) ∖ 𝑥)) → (𝐴𝐵) ≈ (𝑥 +𝑜 𝑦)))
2311, 22sylan2d 498 . . . . 5 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ≈ (𝑥 +𝑜 𝑦)))
24 breq2 4689 . . . . . . 7 (𝑧 = (𝑥 +𝑜 𝑦) → ((𝐴𝐵) ≈ 𝑧 ↔ (𝐴𝐵) ≈ (𝑥 +𝑜 𝑦)))
2524rspcev 3340 . . . . . 6 (((𝑥 +𝑜 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +𝑜 𝑦)) → ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
26 isfi 8021 . . . . . 6 ((𝐴𝐵) ∈ Fin ↔ ∃𝑧 ∈ ω (𝐴𝐵) ≈ 𝑧)
2725, 26sylibr 224 . . . . 5 (((𝑥 +𝑜 𝑦) ∈ ω ∧ (𝐴𝐵) ≈ (𝑥 +𝑜 𝑦)) → (𝐴𝐵) ∈ Fin)
287, 23, 27syl6an 567 . . . 4 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin))
2928rexlimivv 3065 . . 3 (∃𝑥 ∈ ω ∃𝑦 ∈ ω (𝐴𝑥 ∧ (𝐵𝐴) ≈ 𝑦) → (𝐴𝐵) ∈ Fin)
306, 29sylbir 225 . 2 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin) → (𝐴𝐵) ∈ Fin)
311, 30sylan2 490 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wrex 2942  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948   class class class wbr 4685  (class class class)co 6690  ωcom 7107   +𝑜 coa 7602  cen 7994  Fincfn 7997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-oadd 7609  df-er 7787  df-en 7998  df-fin 8001
This theorem is referenced by:  unfi2  8270  difinf  8271  xpfi  8272  prfi  8276  tpfi  8277  fnfi  8279  iunfi  8295  pwfilem  8301  fsuppun  8335  fsuppunfi  8336  ressuppfi  8342  fiin  8369  cantnfp1lem1  8613  ficardun2  9063  ackbij1lem6  9085  ackbij1lem16  9095  fin23lem28  9200  fin23lem30  9202  isfin1-3  9246  axcclem  9317  hashun  13209  hashunlei  13250  hashmap  13260  hashbclem  13274  hashf1lem1  13277  hashf1lem2  13278  hashf1  13279  fsumsplitsn  14518  fsummsnunz  14527  fsumsplitsnun  14528  fsummsnunzOLD  14529  fsumsplitsnunOLD  14530  incexclem  14612  isumltss  14624  fprodsplitsn  14764  lcmfunsnlem2lem1  15398  lcmfunsnlem2lem2  15399  lcmfunsnlem2  15400  lcmfun  15405  ramub1lem1  15777  fpwipodrs  17211  acsfiindd  17224  symgfisg  17934  gsumzunsnd  18401  gsumunsnfd  18402  psrbagaddcl  19418  mplsubg  19485  mpllss  19486  dsmmacl  20133  fctop  20856  uncmp  21254  bwth  21261  lfinun  21376  locfincmp  21377  comppfsc  21383  1stckgenlem  21404  ptbasin  21428  cfinfil  21744  fin1aufil  21783  alexsubALTlem3  21900  tmdgsum  21946  tsmsfbas  21978  tsmsgsum  21989  tsmsres  21994  tsmsxplem1  22003  prdsmet  22222  prdsbl  22343  icccmplem2  22673  rrxmval  23234  rrxmet  23237  rrxdstprj1  23238  ovolfiniun  23315  volfiniun  23361  fta1glem2  23971  fta1lem  24107  aannenlem2  24129  aalioulem2  24133  dchrfi  25025  usgrfilem  26264  ffsrn  29632  eulerpartlemt  30561  ballotlemgun  30714  hgt750lemb  30862  hgt750leme  30864  lindsenlbs  33534  poimirlem31  33570  poimirlem32  33571  itg2addnclem2  33592  ftc1anclem7  33621  ftc1anc  33623  prdsbnd  33722  pclfinN  35504  elrfi  37574  mzpcompact2lem  37631  eldioph2  37642  lsmfgcl  37961  fiuneneq  38092  unfid  39659  dvmptfprodlem  40477  dvnprodlem2  40480  fourierdlem50  40691  fourierdlem51  40692  fourierdlem54  40695  fourierdlem76  40717  fourierdlem80  40721  fourierdlem102  40743  fourierdlem103  40744  fourierdlem104  40745  fourierdlem114  40755  sge0resplit  40941  sge0iunmptlemfi  40948  sge0xaddlem1  40968  hoiprodp1  41123  sge0hsphoire  41124  hoidmvlelem1  41130  hoidmvlelem2  41131  hoidmvlelem5  41134  hspmbllem2  41162  fsummmodsnunz  41670  mndpsuppfi  42481
  Copyright terms: Public domain W3C validator