MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwcl Structured version   Visualization version   GIF version

Theorem r1pwcl 9269
Description: The cumulative hierarchy of a limit ordinal is closed under power set. (Contributed by Raph Levien, 29-May-2004.) (Proof shortened by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1pwcl (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))

Proof of Theorem r1pwcl
StepHypRef Expression
1 r1elwf 9218 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
2 elfvdm 6695 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
31, 2jca 514 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
43a1i 11 . 2 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
5 r1elwf 9218 . . . . 5 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 (𝑅1 “ On))
6 pwwf 9229 . . . . 5 (𝐴 (𝑅1 “ On) ↔ 𝒫 𝐴 (𝑅1 “ On))
75, 6sylibr 236 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
8 elfvdm 6695 . . . 4 (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
97, 8jca 514 . . 3 (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1))
109a1i 11 . 2 (Lim 𝐵 → (𝒫 𝐴 ∈ (𝑅1𝐵) → (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)))
11 limsuc 7557 . . . . . 6 (Lim 𝐵 → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1211adantr 483 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
13 rankpwi 9245 . . . . . . 7 (𝐴 (𝑅1 “ On) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1413ad2antrl 726 . . . . . 6 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (rank‘𝒫 𝐴) = suc (rank‘𝐴))
1514eleq1d 2896 . . . . 5 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝒫 𝐴) ∈ 𝐵 ↔ suc (rank‘𝐴) ∈ 𝐵))
1612, 15bitr4d 284 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → ((rank‘𝐴) ∈ 𝐵 ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
17 rankr1ag 9224 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
1817adantl 484 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
19 rankr1ag 9224 . . . . . 6 ((𝒫 𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
206, 19sylanb 583 . . . . 5 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2120adantl 484 . . . 4 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝒫 𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝒫 𝐴) ∈ 𝐵))
2216, 18, 213bitr4d 313 . . 3 ((Lim 𝐵 ∧ (𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1)) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
2322ex 415 . 2 (Lim 𝐵 → ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵))))
244, 10, 23pm5.21ndd 383 1 (Lim 𝐵 → (𝐴 ∈ (𝑅1𝐵) ↔ 𝒫 𝐴 ∈ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  𝒫 cpw 4532   cuni 4831  dom cdm 5548  cima 5551  Oncon0 6184  Lim wlim 6185  suc csuc 6186  cfv 6348  𝑅1cr1 9184  rankcrnk 9185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-r1 9186  df-rank 9187
This theorem is referenced by:  r1limwun  10151
  Copyright terms: Public domain W3C validator