MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elwf Structured version   Visualization version   GIF version

Theorem r1elwf 8832
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elwf (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elwf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 8802 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 481 . . . . 5 Lim dom 𝑅1
3 limord 5945 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7154 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
6 elfvdm 6381 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
75, 6sseldi 3742 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
8 r1tr 8812 . . . . . 6 Tr (𝑅1𝐵)
9 trss 4913 . . . . . 6 (Tr (𝑅1𝐵) → (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵)))
108, 9ax-mp 5 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵))
11 elpwg 4310 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵)))
1210, 11mpbird 247 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ 𝒫 (𝑅1𝐵))
13 r1sucg 8805 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
146, 13syl 17 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
1512, 14eleqtrrd 2842 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵))
16 suceq 5951 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1716fveq2d 6356 . . . . 5 (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵))
1817eleq2d 2825 . . . 4 (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
1918rspcev 3449 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
207, 15, 19syl2anc 696 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
21 rankwflemb 8829 . 2 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2220, 21sylibr 224 1 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wrex 3051  wss 3715  𝒫 cpw 4302   cuni 4588  Tr wtr 4904  dom cdm 5266  cima 5269  Ord word 5883  Oncon0 5884  Lim wlim 5885  suc csuc 5886  Fun wfun 6043  cfv 6049  𝑅1cr1 8798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-r1 8800
This theorem is referenced by:  rankr1ai  8834  pwwf  8843  sswf  8844  unwf  8846  uniwf  8855  rankonidlem  8864  r1pw  8881  r1pwcl  8883  rankr1id  8898  tcrank  8920  dfac12lem2  9158  r1limwun  9750  r1wunlim  9751  inatsk  9792
  Copyright terms: Public domain W3C validator