MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1elwf Structured version   Visualization version   GIF version

Theorem r1elwf 8603
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1elwf (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))

Proof of Theorem r1elwf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 r1funlim 8573 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 478 . . . . 5 Lim dom 𝑅1
3 limord 5743 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 6936 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
6 elfvdm 6177 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
75, 6sseldi 3581 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
8 r1tr 8583 . . . . . 6 Tr (𝑅1𝐵)
9 trss 4721 . . . . . 6 (Tr (𝑅1𝐵) → (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵)))
108, 9ax-mp 5 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ⊆ (𝑅1𝐵))
11 elpwg 4138 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐴 ∈ 𝒫 (𝑅1𝐵) ↔ 𝐴 ⊆ (𝑅1𝐵)))
1210, 11mpbird 247 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ 𝒫 (𝑅1𝐵))
13 r1sucg 8576 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
146, 13syl 17 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1𝐵))
1512, 14eleqtrrd 2701 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵))
16 suceq 5749 . . . . . 6 (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵)
1716fveq2d 6152 . . . . 5 (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵))
1817eleq2d 2684 . . . 4 (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵)))
1918rspcev 3295 . . 3 ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
207, 15, 19syl2anc 692 . 2 (𝐴 ∈ (𝑅1𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
21 rankwflemb 8600 . 2 (𝐴 (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥))
2220, 21sylibr 224 1 (𝐴 ∈ (𝑅1𝐵) → 𝐴 (𝑅1 “ On))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  wrex 2908  wss 3555  𝒫 cpw 4130   cuni 4402  Tr wtr 4712  dom cdm 5074  cima 5077  Ord word 5681  Oncon0 5682  Lim wlim 5683  suc csuc 5684  Fun wfun 5841  cfv 5847  𝑅1cr1 8569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-r1 8571
This theorem is referenced by:  rankr1ai  8605  pwwf  8614  sswf  8615  unwf  8617  uniwf  8626  rankonidlem  8635  r1pw  8652  r1pwcl  8654  rankr1id  8669  tcrank  8691  dfac12lem2  8910  r1limwun  9502  r1wunlim  9503  inatsk  9544
  Copyright terms: Public domain W3C validator