![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1elwf | Structured version Visualization version GIF version |
Description: Any member of the cumulative hierarchy is well-founded. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
r1elwf | ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r1funlim 8802 | . . . . . 6 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
2 | 1 | simpri 481 | . . . . 5 ⊢ Lim dom 𝑅1 |
3 | limord 5945 | . . . . 5 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
4 | ordsson 7154 | . . . . 5 ⊢ (Ord dom 𝑅1 → dom 𝑅1 ⊆ On) | |
5 | 2, 3, 4 | mp2b 10 | . . . 4 ⊢ dom 𝑅1 ⊆ On |
6 | elfvdm 6381 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ dom 𝑅1) | |
7 | 5, 6 | sseldi 3742 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐵 ∈ On) |
8 | r1tr 8812 | . . . . . 6 ⊢ Tr (𝑅1‘𝐵) | |
9 | trss 4913 | . . . . . 6 ⊢ (Tr (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵))) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ⊆ (𝑅1‘𝐵)) |
11 | elpwg 4310 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝐴 ∈ 𝒫 (𝑅1‘𝐵) ↔ 𝐴 ⊆ (𝑅1‘𝐵))) | |
12 | 10, 11 | mpbird 247 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ 𝒫 (𝑅1‘𝐵)) |
13 | r1sucg 8805 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) | |
14 | 6, 13 | syl 17 | . . . 4 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (𝑅1‘suc 𝐵) = 𝒫 (𝑅1‘𝐵)) |
15 | 12, 14 | eleqtrrd 2842 | . . 3 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘suc 𝐵)) |
16 | suceq 5951 | . . . . . 6 ⊢ (𝑥 = 𝐵 → suc 𝑥 = suc 𝐵) | |
17 | 16 | fveq2d 6356 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑅1‘suc 𝑥) = (𝑅1‘suc 𝐵)) |
18 | 17 | eleq2d 2825 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝐴 ∈ (𝑅1‘suc 𝑥) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) |
19 | 18 | rspcev 3449 | . . 3 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ (𝑅1‘suc 𝐵)) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
20 | 7, 15, 19 | syl2anc 696 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) |
21 | rankwflemb 8829 | . 2 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘suc 𝑥)) | |
22 | 20, 21 | sylibr 224 | 1 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ⊆ wss 3715 𝒫 cpw 4302 ∪ cuni 4588 Tr wtr 4904 dom cdm 5266 “ cima 5269 Ord word 5883 Oncon0 5884 Lim wlim 5885 suc csuc 5886 Fun wfun 6043 ‘cfv 6049 𝑅1cr1 8798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-r1 8800 |
This theorem is referenced by: rankr1ai 8834 pwwf 8843 sswf 8844 unwf 8846 uniwf 8855 rankonidlem 8864 r1pw 8881 r1pwcl 8883 rankr1id 8898 tcrank 8920 dfac12lem2 9158 r1limwun 9750 r1wunlim 9751 inatsk 9792 |
Copyright terms: Public domain | W3C validator |