MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pwss Structured version   Visualization version   GIF version

Theorem r1pwss 9213
Description: Each set of the cumulative hierarchy is closed under subsets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
r1pwss (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))

Proof of Theorem r1pwss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r1funlim 9195 . . . . . . 7 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 488 . . . . . 6 Lim dom 𝑅1
3 limord 6250 . . . . . 6 (Lim dom 𝑅1 → Ord dom 𝑅1)
42, 3ax-mp 5 . . . . 5 Ord dom 𝑅1
5 ordsson 7504 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
64, 5ax-mp 5 . . . 4 dom 𝑅1 ⊆ On
7 elfvdm 6702 . . . 4 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ dom 𝑅1)
86, 7sseldi 3965 . . 3 (𝐴 ∈ (𝑅1𝐵) → 𝐵 ∈ On)
9 onzsl 7561 . . 3 (𝐵 ∈ On ↔ (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
108, 9sylib 220 . 2 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)))
11 noel 4296 . . . . 5 ¬ 𝐴 ∈ ∅
12 fveq2 6670 . . . . . . . 8 (𝐵 = ∅ → (𝑅1𝐵) = (𝑅1‘∅))
13 r10 9197 . . . . . . . 8 (𝑅1‘∅) = ∅
1412, 13syl6eq 2872 . . . . . . 7 (𝐵 = ∅ → (𝑅1𝐵) = ∅)
1514eleq2d 2898 . . . . . 6 (𝐵 = ∅ → (𝐴 ∈ (𝑅1𝐵) ↔ 𝐴 ∈ ∅))
1615biimpcd 251 . . . . 5 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝐴 ∈ ∅))
1711, 16mtoi 201 . . . 4 (𝐴 ∈ (𝑅1𝐵) → ¬ 𝐵 = ∅)
1817pm2.21d 121 . . 3 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = ∅ → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
19 simpl 485 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ (𝑅1𝐵))
20 simpr 487 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 = suc 𝑥)
2120fveq2d 6674 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = (𝑅1‘suc 𝑥))
227adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐵 ∈ dom 𝑅1)
2320, 22eqeltrrd 2914 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → suc 𝑥 ∈ dom 𝑅1)
24 limsuc 7564 . . . . . . . . . . . 12 (Lim dom 𝑅1 → (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1))
252, 24ax-mp 5 . . . . . . . . . . 11 (𝑥 ∈ dom 𝑅1 ↔ suc 𝑥 ∈ dom 𝑅1)
2623, 25sylibr 236 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝑥 ∈ dom 𝑅1)
27 r1sucg 9198 . . . . . . . . . 10 (𝑥 ∈ dom 𝑅1 → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
2921, 28eqtrd 2856 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → (𝑅1𝐵) = 𝒫 (𝑅1𝑥))
3019, 29eleqtrd 2915 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝐴 ∈ 𝒫 (𝑅1𝑥))
31 elpwi 4548 . . . . . . 7 (𝐴 ∈ 𝒫 (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥))
32 sspw 4552 . . . . . . 7 (𝐴 ⊆ (𝑅1𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3330, 31, 323syl 18 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
3433, 29sseqtrrd 4008 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ 𝐵 = suc 𝑥) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
3534ex 415 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
3635rexlimdvw 3290 . . 3 (𝐴 ∈ (𝑅1𝐵) → (∃𝑥 ∈ On 𝐵 = suc 𝑥 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
37 r1tr 9205 . . . . . 6 Tr (𝑅1𝐵)
38 simpl 485 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 ∈ (𝑅1𝐵))
39 r1limg 9200 . . . . . . . . . . . 12 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
407, 39sylan 582 . . . . . . . . . . 11 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑥𝐵 (𝑅1𝑥))
4138, 40eleqtrd 2915 . . . . . . . . . 10 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝐴 𝑥𝐵 (𝑅1𝑥))
42 eliun 4923 . . . . . . . . . 10 (𝐴 𝑥𝐵 (𝑅1𝑥) ↔ ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
4341, 42sylib 220 . . . . . . . . 9 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑥𝐵 𝐴 ∈ (𝑅1𝑥))
44 simprl 769 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥𝐵)
45 limsuc 7564 . . . . . . . . . . . . 13 (Lim 𝐵 → (𝑥𝐵 ↔ suc 𝑥𝐵))
4645ad2antlr 725 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑥𝐵 ↔ suc 𝑥𝐵))
4744, 46mpbid 234 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥𝐵)
48 limsuc 7564 . . . . . . . . . . . 12 (Lim 𝐵 → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
4948ad2antlr 725 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (suc 𝑥𝐵 ↔ suc suc 𝑥𝐵))
5047, 49mpbid 234 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc suc 𝑥𝐵)
51 r1tr 9205 . . . . . . . . . . . . . . 15 Tr (𝑅1𝑥)
52 simprr 771 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ∈ (𝑅1𝑥))
53 trss 5181 . . . . . . . . . . . . . . 15 (Tr (𝑅1𝑥) → (𝐴 ∈ (𝑅1𝑥) → 𝐴 ⊆ (𝑅1𝑥)))
5451, 52, 53mpsyl 68 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐴 ⊆ (𝑅1𝑥))
5554, 32syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ 𝒫 (𝑅1𝑥))
567ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝐵 ∈ dom 𝑅1)
57 ordtr1 6234 . . . . . . . . . . . . . . . 16 (Ord dom 𝑅1 → ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1))
584, 57ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑥𝐵𝐵 ∈ dom 𝑅1) → 𝑥 ∈ dom 𝑅1)
5944, 56, 58syl2anc 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝑥 ∈ dom 𝑅1)
6059, 27syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc 𝑥) = 𝒫 (𝑅1𝑥))
6155, 60sseqtrrd 4008 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
62 fvex 6683 . . . . . . . . . . . . 13 (𝑅1‘suc 𝑥) ∈ V
6362elpw2 5248 . . . . . . . . . . . 12 (𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥) ↔ 𝒫 𝐴 ⊆ (𝑅1‘suc 𝑥))
6461, 63sylibr 236 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ 𝒫 (𝑅1‘suc 𝑥))
6559, 25sylib 220 . . . . . . . . . . . 12 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → suc 𝑥 ∈ dom 𝑅1)
66 r1sucg 9198 . . . . . . . . . . . 12 (suc 𝑥 ∈ dom 𝑅1 → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6765, 66syl 17 . . . . . . . . . . 11 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → (𝑅1‘suc suc 𝑥) = 𝒫 (𝑅1‘suc 𝑥))
6864, 67eleqtrrd 2916 . . . . . . . . . 10 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥))
69 fveq2 6670 . . . . . . . . . . . 12 (𝑦 = suc suc 𝑥 → (𝑅1𝑦) = (𝑅1‘suc suc 𝑥))
7069eleq2d 2898 . . . . . . . . . . 11 (𝑦 = suc suc 𝑥 → (𝒫 𝐴 ∈ (𝑅1𝑦) ↔ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)))
7170rspcev 3623 . . . . . . . . . 10 ((suc suc 𝑥𝐵 ∧ 𝒫 𝐴 ∈ (𝑅1‘suc suc 𝑥)) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7250, 68, 71syl2anc 586 . . . . . . . . 9 (((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) ∧ (𝑥𝐵𝐴 ∈ (𝑅1𝑥))) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7343, 72rexlimddv 3291 . . . . . . . 8 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
74 eliun 4923 . . . . . . . 8 (𝒫 𝐴 𝑦𝐵 (𝑅1𝑦) ↔ ∃𝑦𝐵 𝒫 𝐴 ∈ (𝑅1𝑦))
7573, 74sylibr 236 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 𝑦𝐵 (𝑅1𝑦))
76 r1limg 9200 . . . . . . . 8 ((𝐵 ∈ dom 𝑅1 ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
777, 76sylan 582 . . . . . . 7 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → (𝑅1𝐵) = 𝑦𝐵 (𝑅1𝑦))
7875, 77eleqtrrd 2916 . . . . . 6 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ∈ (𝑅1𝐵))
79 trss 5181 . . . . . 6 (Tr (𝑅1𝐵) → (𝒫 𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8037, 78, 79mpsyl 68 . . . . 5 ((𝐴 ∈ (𝑅1𝐵) ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
8180ex 415 . . . 4 (𝐴 ∈ (𝑅1𝐵) → (Lim 𝐵 → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8281adantld 493 . . 3 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 ∈ V ∧ Lim 𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8318, 36, 823jaod 1424 . 2 (𝐴 ∈ (𝑅1𝐵) → ((𝐵 = ∅ ∨ ∃𝑥 ∈ On 𝐵 = suc 𝑥 ∨ (𝐵 ∈ V ∧ Lim 𝐵)) → 𝒫 𝐴 ⊆ (𝑅1𝐵)))
8410, 83mpd 15 1 (𝐴 ∈ (𝑅1𝐵) → 𝒫 𝐴 ⊆ (𝑅1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082   = wceq 1537  wcel 2114  wrex 3139  Vcvv 3494  wss 3936  c0 4291  𝒫 cpw 4539   ciun 4919  Tr wtr 5172  dom cdm 5555  Ord word 6190  Oncon0 6191  Lim wlim 6192  suc csuc 6193  Fun wfun 6349  cfv 6355  𝑅1cr1 9191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193
This theorem is referenced by:  r1sscl  9214
  Copyright terms: Public domain W3C validator