MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordsson Structured version   Visualization version   GIF version

Theorem ordsson 7504
Description: Any ordinal class is a subclass of the class of ordinal numbers. Corollary 7.15 of [TakeutiZaring] p. 38. (Contributed by NM, 18-May-1994.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
ordsson (Ord 𝐴𝐴 ⊆ On)

Proof of Theorem ordsson
StepHypRef Expression
1 ordon 7498 . 2 Ord On
2 ordeleqon 7503 . . . . 5 (Ord 𝐴 ↔ (𝐴 ∈ On ∨ 𝐴 = On))
32biimpi 218 . . . 4 (Ord 𝐴 → (𝐴 ∈ On ∨ 𝐴 = On))
43adantr 483 . . 3 ((Ord 𝐴 ∧ Ord On) → (𝐴 ∈ On ∨ 𝐴 = On))
5 ordsseleq 6220 . . 3 ((Ord 𝐴 ∧ Ord On) → (𝐴 ⊆ On ↔ (𝐴 ∈ On ∨ 𝐴 = On)))
64, 5mpbird 259 . 2 ((Ord 𝐴 ∧ Ord On) → 𝐴 ⊆ On)
71, 6mpan2 689 1 (Ord 𝐴𝐴 ⊆ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wss 3936  Ord word 6190  Oncon0 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-ord 6194  df-on 6195
This theorem is referenced by:  onss  7505  orduni  7509  ordsucuniel  7539  ordsucuni  7544  iordsmo  7994  dfrecs3  8009  tfr2b  8032  tz7.44-2  8043  ordiso2  8979  ordtypelem7  8988  ordtypelem8  8989  oiid  9005  r1tr  9205  r1ordg  9207  r1ord3g  9208  r1pwss  9213  r1val1  9215  rankwflemb  9222  r1elwf  9225  rankr1ai  9227  cflim2  9685  cfss  9687  cfslb  9688  cfslbn  9689  cfslb2n  9690  cofsmo  9691  coftr  9695  inaprc  10258  satfn  32602  dford5  32957  rdgprc  33039  nosepon  33172  limsucncmpi  33793
  Copyright terms: Public domain W3C validator