MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankpr Structured version   Visualization version   GIF version

Theorem rankpr 9286
Description: The rank of an unordered pair. Part of Exercise 30 of [Enderton] p. 207. (Contributed by NM, 28-Nov-2003.) (Revised by Mario Carneiro, 17-Nov-2014.)
Hypotheses
Ref Expression
ranksn.1 𝐴 ∈ V
rankun.2 𝐵 ∈ V
Assertion
Ref Expression
rankpr (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))

Proof of Theorem rankpr
StepHypRef Expression
1 ranksn.1 . . 3 𝐴 ∈ V
2 unir1 9242 . . 3 (𝑅1 “ On) = V
31, 2eleqtrri 2912 . 2 𝐴 (𝑅1 “ On)
4 rankun.2 . . 3 𝐵 ∈ V
54, 2eleqtrri 2912 . 2 𝐵 (𝑅1 “ On)
6 rankprb 9280 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 (𝑅1 “ On)) → (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵)))
73, 5, 6mp2an 690 1 (rank‘{𝐴, 𝐵}) = suc ((rank‘𝐴) ∪ (rank‘𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2114  Vcvv 3494  cun 3934  {cpr 4569   cuni 4838  cima 5558  Oncon0 6191  suc csuc 6193  cfv 6355  𝑅1cr1 9191  rankcrnk 9192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-reg 9056  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-r1 9193  df-rank 9194
This theorem is referenced by:  rankelpr  9302  rankelop  9303
  Copyright terms: Public domain W3C validator