MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankxpu Structured version   Visualization version   GIF version

Theorem rankxpu 8852
Description: An upper bound on the rank of a Cartesian product. (Contributed by NM, 18-Sep-2006.)
Hypotheses
Ref Expression
rankxpl.1 𝐴 ∈ V
rankxpl.2 𝐵 ∈ V
Assertion
Ref Expression
rankxpu (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴𝐵))

Proof of Theorem rankxpu
StepHypRef Expression
1 xpsspw 5341 . . 3 (𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵)
2 rankxpl.1 . . . . . . 7 𝐴 ∈ V
3 rankxpl.2 . . . . . . 7 𝐵 ∈ V
42, 3unex 7073 . . . . . 6 (𝐴𝐵) ∈ V
54pwex 4953 . . . . 5 𝒫 (𝐴𝐵) ∈ V
65pwex 4953 . . . 4 𝒫 𝒫 (𝐴𝐵) ∈ V
76rankss 8825 . . 3 ((𝐴 × 𝐵) ⊆ 𝒫 𝒫 (𝐴𝐵) → (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴𝐵)))
81, 7ax-mp 5 . 2 (rank‘(𝐴 × 𝐵)) ⊆ (rank‘𝒫 𝒫 (𝐴𝐵))
95rankpw 8819 . . 3 (rank‘𝒫 𝒫 (𝐴𝐵)) = suc (rank‘𝒫 (𝐴𝐵))
104rankpw 8819 . . . 4 (rank‘𝒫 (𝐴𝐵)) = suc (rank‘(𝐴𝐵))
11 suceq 5903 . . . 4 ((rank‘𝒫 (𝐴𝐵)) = suc (rank‘(𝐴𝐵)) → suc (rank‘𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵)))
1210, 11ax-mp 5 . . 3 suc (rank‘𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵))
139, 12eqtri 2746 . 2 (rank‘𝒫 𝒫 (𝐴𝐵)) = suc suc (rank‘(𝐴𝐵))
148, 13sseqtri 3743 1 (rank‘(𝐴 × 𝐵)) ⊆ suc suc (rank‘(𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1596  wcel 2103  Vcvv 3304  cun 3678  wss 3680  𝒫 cpw 4266   × cxp 5216  suc csuc 5838  cfv 6001  rankcrnk 8739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-reg 8613  ax-inf2 8651
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-om 7183  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-r1 8740  df-rank 8741
This theorem is referenced by:  rankfu  8853  rankmapu  8854  rankxplim3  8857
  Copyright terms: Public domain W3C validator