MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgseg Structured version   Visualization version   GIF version

Theorem rdgseg 8060
Description: The initial segments of the recursive definition generator are sets. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rdgseg (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)

Proof of Theorem rdgseg
Dummy variables 𝑥 𝑦 𝑓 𝑔 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rdg 8048 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
21reseq1i 5851 . 2 (rec(𝐹, 𝐴) ↾ 𝐵) = (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵)
3 rdglem1 8053 . . . 4 {𝑤 ∣ ∃𝑦 ∈ On (𝑤 Fn 𝑦 ∧ ∀𝑣𝑦 (𝑤𝑣) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑤𝑣)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
43tfrlem9a 8024 . . 3 (𝐵 ∈ dom recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) → (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵) ∈ V)
51dmeqi 5775 . . 3 dom rec(𝐹, 𝐴) = dom recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
64, 5eleq2s 2933 . 2 (𝐵 ∈ dom rec(𝐹, 𝐴) → (recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐴, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) ↾ 𝐵) ∈ V)
72, 6eqeltrid 2919 1 (𝐵 ∈ dom rec(𝐹, 𝐴) → (rec(𝐹, 𝐴) ↾ 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2801  wral 3140  wrex 3141  Vcvv 3496  c0 4293  ifcif 4469   cuni 4840  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  Oncon0 6193  Lim wlim 6194   Fn wfn 6352  cfv 6357  recscrecs 8009  reccrdg 8047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-wrecs 7949  df-recs 8010  df-rdg 8048
This theorem is referenced by:  rdgsucg  8061  rdglimg  8063
  Copyright terms: Public domain W3C validator