MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resgrpplusfrn Structured version   Visualization version   GIF version

Theorem resgrpplusfrn 17483
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
resgrpplusfrn.b 𝐵 = (Base‘𝐺)
resgrpplusfrn.h 𝐻 = (𝐺s 𝑆)
resgrpplusfrn.o 𝐹 = (+𝑓𝐻)
Assertion
Ref Expression
resgrpplusfrn ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)

Proof of Theorem resgrpplusfrn
StepHypRef Expression
1 eqid 2651 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
2 resgrpplusfrn.o . . . . 5 𝐹 = (+𝑓𝐻)
31, 2grpplusfo 17482 . . . 4 (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
43adantr 480 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
5 eqidd 2652 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹 = 𝐹)
6 resgrpplusfrn.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
7 resgrpplusfrn.b . . . . . . 7 𝐵 = (Base‘𝐺)
86, 7ressbas2 15978 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
98adantl 481 . . . . 5 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = (Base‘𝐻))
109sqxpeqd 5175 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻)))
115, 10, 9foeq123d 6170 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝐹:(𝑆 × 𝑆)–onto𝑆𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)))
124, 11mpbird 247 . 2 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:(𝑆 × 𝑆)–onto𝑆)
13 forn 6156 . . 3 (𝐹:(𝑆 × 𝑆)–onto𝑆 → ran 𝐹 = 𝑆)
1413eqcomd 2657 . 2 (𝐹:(𝑆 × 𝑆)–onto𝑆𝑆 = ran 𝐹)
1512, 14syl 17 1 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wss 3607   × cxp 5141  ran crn 5144  ontowfo 5924  cfv 5926  (class class class)co 6690  Basecbs 15904  s cress 15905  +𝑓cplusf 17286  Grpcgrp 17469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-i2m1 10042  ax-1ne0 10043  ax-rrecex 10046  ax-cnre 10047
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-nn 11059  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-0g 16149  df-plusf 17288  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator