MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resgrpplusfrn Structured version   Visualization version   GIF version

Theorem resgrpplusfrn 18117
Description: The underlying set of a group operation which is a restriction of a structure. (Contributed by Paul Chapman, 25-Mar-2008.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
resgrpplusfrn.b 𝐵 = (Base‘𝐺)
resgrpplusfrn.h 𝐻 = (𝐺s 𝑆)
resgrpplusfrn.o 𝐹 = (+𝑓𝐻)
Assertion
Ref Expression
resgrpplusfrn ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)

Proof of Theorem resgrpplusfrn
StepHypRef Expression
1 eqid 2821 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
2 resgrpplusfrn.o . . . . 5 𝐹 = (+𝑓𝐻)
31, 2grpplusfo 18116 . . . 4 (𝐻 ∈ Grp → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
43adantr 483 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻))
5 eqidd 2822 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹 = 𝐹)
6 resgrpplusfrn.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
7 resgrpplusfrn.b . . . . . . 7 𝐵 = (Base‘𝐺)
86, 7ressbas2 16555 . . . . . 6 (𝑆𝐵𝑆 = (Base‘𝐻))
98adantl 484 . . . . 5 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = (Base‘𝐻))
109sqxpeqd 5587 . . . 4 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝑆 × 𝑆) = ((Base‘𝐻) × (Base‘𝐻)))
115, 10, 9foeq123d 6609 . . 3 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → (𝐹:(𝑆 × 𝑆)–onto𝑆𝐹:((Base‘𝐻) × (Base‘𝐻))–onto→(Base‘𝐻)))
124, 11mpbird 259 . 2 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝐹:(𝑆 × 𝑆)–onto𝑆)
13 forn 6593 . . 3 (𝐹:(𝑆 × 𝑆)–onto𝑆 → ran 𝐹 = 𝑆)
1413eqcomd 2827 . 2 (𝐹:(𝑆 × 𝑆)–onto𝑆𝑆 = ran 𝐹)
1512, 14syl 17 1 ((𝐻 ∈ Grp ∧ 𝑆𝐵) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3936   × cxp 5553  ran crn 5556  ontowfo 6353  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  +𝑓cplusf 17849  Grpcgrp 18103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-nn 11639  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-0g 16715  df-plusf 17851  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator