Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resubeu Structured version   Visualization version   GIF version

Theorem resubeu 39284
Description: Existential uniqueness of real differences. (Contributed by Steven Nguyen, 7-Jan-2023.)
Assertion
Ref Expression
resubeu ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem resubeu
StepHypRef Expression
1 simpl 485 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
2 rernegcl 39278 . . . . 5 (𝐴 ∈ ℝ → (0 − 𝐴) ∈ ℝ)
32adantr 483 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − 𝐴) ∈ ℝ)
4 elre0re 39231 . . . . . . . 8 (𝐴 ∈ ℝ → 0 ∈ ℝ)
54, 4readdcld 10663 . . . . . . 7 (𝐴 ∈ ℝ → (0 + 0) ∈ ℝ)
6 rernegcl 39278 . . . . . . 7 ((0 + 0) ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
75, 6syl 17 . . . . . 6 (𝐴 ∈ ℝ → (0 − (0 + 0)) ∈ ℝ)
87adantr 483 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 − (0 + 0)) ∈ ℝ)
9 simpr 487 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
108, 9readdcld 10663 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − (0 + 0)) + 𝐵) ∈ ℝ)
113, 10readdcld 10663 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ)
12 resubeulem2 39283 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵)
13 oveq2 7157 . . . . 5 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → (𝐴 + 𝑥) = (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))))
1413eqeq1d 2822 . . . 4 (𝑥 = ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) → ((𝐴 + 𝑥) = 𝐵 ↔ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵))
1514rspcev 3620 . . 3 ((((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵)) ∈ ℝ ∧ (𝐴 + ((0 − 𝐴) + ((0 − (0 + 0)) + 𝐵))) = 𝐵) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
1611, 12, 15syl2anc 586 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
171, 16renegeulem 39276 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ∃!𝑥 ∈ ℝ (𝐴 + 𝑥) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wrex 3138  ∃!wreu 3139  (class class class)co 7149  cr 10529  0cc0 10530   + caddc 10533   cresub 39272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-resscn 10587  ax-addrcl 10591  ax-addass 10595  ax-rnegex 10601  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-resub 39273
This theorem is referenced by:  rersubcl  39285  resubadd  39286
  Copyright terms: Public domain W3C validator