Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlim2 Structured version   Visualization version   GIF version

Theorem rlim2 14161
 Description: Rewrite rlim 14160 for a mapping operation. (Contributed by Mario Carneiro, 16-Sep-2014.) (Revised by Mario Carneiro, 28-Feb-2015.)
Hypotheses
Ref Expression
rlim2.1 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
rlim2.2 (𝜑𝐴 ⊆ ℝ)
rlim2.3 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
rlim2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)

Proof of Theorem rlim2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 rlim2.1 . . . 4 (𝜑 → ∀𝑧𝐴 𝐵 ∈ ℂ)
2 eqid 2621 . . . . 5 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
32fmpt 6337 . . . 4 (∀𝑧𝐴 𝐵 ∈ ℂ ↔ (𝑧𝐴𝐵):𝐴⟶ℂ)
41, 3sylib 208 . . 3 (𝜑 → (𝑧𝐴𝐵):𝐴⟶ℂ)
5 rlim2.2 . . 3 (𝜑𝐴 ⊆ ℝ)
6 eqidd 2622 . . 3 ((𝜑𝑤𝐴) → ((𝑧𝐴𝐵)‘𝑤) = ((𝑧𝐴𝐵)‘𝑤))
74, 5, 6rlim 14160 . 2 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
8 rlim2.3 . . 3 (𝜑𝐶 ∈ ℂ)
98biantrurd 529 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥))))
10 nfv 1840 . . . . . . 7 𝑧 𝑦𝑤
11 nfcv 2761 . . . . . . . . 9 𝑧abs
12 nffvmpt1 6156 . . . . . . . . . 10 𝑧((𝑧𝐴𝐵)‘𝑤)
13 nfcv 2761 . . . . . . . . . 10 𝑧
14 nfcv 2761 . . . . . . . . . 10 𝑧𝐶
1512, 13, 14nfov 6630 . . . . . . . . 9 𝑧(((𝑧𝐴𝐵)‘𝑤) − 𝐶)
1611, 15nffv 6155 . . . . . . . 8 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶))
17 nfcv 2761 . . . . . . . 8 𝑧 <
18 nfcv 2761 . . . . . . . 8 𝑧𝑥
1916, 17, 18nfbr 4659 . . . . . . 7 𝑧(abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥
2010, 19nfim 1822 . . . . . 6 𝑧(𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥)
21 nfv 1840 . . . . . 6 𝑤(𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)
22 breq2 4617 . . . . . . 7 (𝑤 = 𝑧 → (𝑦𝑤𝑦𝑧))
23 fveq2 6148 . . . . . . . . . 10 (𝑤 = 𝑧 → ((𝑧𝐴𝐵)‘𝑤) = ((𝑧𝐴𝐵)‘𝑧))
2423oveq1d 6619 . . . . . . . . 9 (𝑤 = 𝑧 → (((𝑧𝐴𝐵)‘𝑤) − 𝐶) = (((𝑧𝐴𝐵)‘𝑧) − 𝐶))
2524fveq2d 6152 . . . . . . . 8 (𝑤 = 𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) = (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)))
2625breq1d 4623 . . . . . . 7 (𝑤 = 𝑧 → ((abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥 ↔ (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥))
2722, 26imbi12d 334 . . . . . 6 (𝑤 = 𝑧 → ((𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥)))
2820, 21, 27cbvral 3155 . . . . 5 (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥))
292fvmpt2 6248 . . . . . . . . . . 11 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑧𝐴𝐵)‘𝑧) = 𝐵)
3029oveq1d 6619 . . . . . . . . . 10 ((𝑧𝐴𝐵 ∈ ℂ) → (((𝑧𝐴𝐵)‘𝑧) − 𝐶) = (𝐵𝐶))
3130fveq2d 6152 . . . . . . . . 9 ((𝑧𝐴𝐵 ∈ ℂ) → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) = (abs‘(𝐵𝐶)))
3231breq1d 4623 . . . . . . . 8 ((𝑧𝐴𝐵 ∈ ℂ) → ((abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐵𝐶)) < 𝑥))
3332imbi2d 330 . . . . . . 7 ((𝑧𝐴𝐵 ∈ ℂ) → ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3433ralimiaa 2946 . . . . . 6 (∀𝑧𝐴 𝐵 ∈ ℂ → ∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
35 ralbi 3061 . . . . . 6 (∀𝑧𝐴 ((𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)) → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
361, 34, 353syl 18 . . . . 5 (𝜑 → (∀𝑧𝐴 (𝑦𝑧 → (abs‘(((𝑧𝐴𝐵)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3728, 36syl5bb 272 . . . 4 (𝜑 → (∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3837rexbidv 3045 . . 3 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
3938ralbidv 2980 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑤𝐴 (𝑦𝑤 → (abs‘(((𝑧𝐴𝐵)‘𝑤) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
407, 9, 393bitr2d 296 1 (𝜑 → ((𝑧𝐴𝐵) ⇝𝑟 𝐶 ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑥)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ⊆ wss 3555   class class class wbr 4613   ↦ cmpt 4673  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879   < clt 10018   ≤ cle 10019   − cmin 10210  ℝ+crp 11776  abscabs 13908   ⇝𝑟 crli 14150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-pm 7805  df-rlim 14154 This theorem is referenced by:  rlim2lt  14162  rlim3  14163  rlim0  14173  rlimi  14178  rlimconst  14209  climrlim2  14212  rlimcn1  14253  rlimcn2  14255  chtppilim  25064  pntlem3  25198
 Copyright terms: Public domain W3C validator