Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfvsuclem1 Structured version   Visualization version   GIF version

Theorem satfvsuclem1 32606
Description: Lemma 1 for satfvsuc 32608. (Contributed by AV, 8-Oct-2023.)
Hypothesis
Ref Expression
satfv0.s 𝑆 = (𝑀 Sat 𝐸)
Assertion
Ref Expression
satfvsuclem1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀m ω))} ∈ V)
Distinct variable groups:   𝐸,𝑎,𝑖,𝑢,𝑣,𝑥,𝑦,𝑧   𝑀,𝑎,𝑖,𝑢,𝑣,𝑥,𝑦,𝑧   𝑢,𝑁,𝑣,𝑥,𝑦   𝑢,𝑆,𝑣,𝑥   𝑢,𝑉,𝑦   𝑢,𝑊,𝑦
Allowed substitution hints:   𝑆(𝑦,𝑧,𝑖,𝑎)   𝑁(𝑧,𝑖,𝑎)   𝑉(𝑥,𝑧,𝑣,𝑖,𝑎)   𝑊(𝑥,𝑧,𝑣,𝑖,𝑎)

Proof of Theorem satfvsuclem1
StepHypRef Expression
1 ancom 463 . . 3 ((∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀m ω)) ↔ (𝑦 ∈ 𝒫 (𝑀m ω) ∧ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
21opabbii 5133 . 2 {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀m ω))} = {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 (𝑀m ω) ∧ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))}
3 ovex 7189 . . . . 5 (𝑀m ω) ∈ V
43pwex 5281 . . . 4 𝒫 (𝑀m ω) ∈ V
54a1i 11 . . 3 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → 𝒫 (𝑀m ω) ∈ V)
6 fvex 6683 . . . 4 (𝑆𝑁) ∈ V
7 unab 4270 . . . . . . 7 ({𝑥 ∣ ∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))} ∪ {𝑥 ∣ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})}) = {𝑥 ∣ (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
86abrexex 7663 . . . . . . . . 9 {𝑥 ∣ ∃𝑣 ∈ (𝑆𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))} ∈ V
9 simpl 485 . . . . . . . . . . 11 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)))
109reximi 3243 . . . . . . . . . 10 (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → ∃𝑣 ∈ (𝑆𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)))
1110ss2abi 4043 . . . . . . . . 9 {𝑥 ∣ ∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))} ⊆ {𝑥 ∣ ∃𝑣 ∈ (𝑆𝑁)𝑥 = ((1st𝑢)⊼𝑔(1st𝑣))}
128, 11ssexi 5226 . . . . . . . 8 {𝑥 ∣ ∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))} ∈ V
13 omex 9106 . . . . . . . . . 10 ω ∈ V
1413abrexex 7663 . . . . . . . . 9 {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)} ∈ V
15 simpl 485 . . . . . . . . . . 11 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑥 = ∀𝑔𝑖(1st𝑢))
1615reximi 3243 . . . . . . . . . 10 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢))
1716ss2abi 4043 . . . . . . . . 9 {𝑥 ∣ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})} ⊆ {𝑥 ∣ ∃𝑖 ∈ ω 𝑥 = ∀𝑔𝑖(1st𝑢)}
1814, 17ssexi 5226 . . . . . . . 8 {𝑥 ∣ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})} ∈ V
1912, 18unex 7469 . . . . . . 7 ({𝑥 ∣ ∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))} ∪ {𝑥 ∣ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})}) ∈ V
207, 19eqeltrri 2910 . . . . . 6 {𝑥 ∣ (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ∈ V
2120a1i 11 . . . . 5 ((((𝑀𝑉𝐸𝑊𝑁 ∈ ω) ∧ 𝑦 ∈ 𝒫 (𝑀m ω)) ∧ 𝑢 ∈ (𝑆𝑁)) → {𝑥 ∣ (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ∈ V)
2221ralrimiva 3182 . . . 4 (((𝑀𝑉𝐸𝑊𝑁 ∈ ω) ∧ 𝑦 ∈ 𝒫 (𝑀m ω)) → ∀𝑢 ∈ (𝑆𝑁){𝑥 ∣ (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ∈ V)
23 abrexex2g 7665 . . . 4 (((𝑆𝑁) ∈ V ∧ ∀𝑢 ∈ (𝑆𝑁){𝑥 ∣ (∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ∈ V) → {𝑥 ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ∈ V)
246, 22, 23sylancr 589 . . 3 (((𝑀𝑉𝐸𝑊𝑁 ∈ ω) ∧ 𝑦 ∈ 𝒫 (𝑀m ω)) → {𝑥 ∣ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ∈ V)
255, 24opabex3rd 7667 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → {⟨𝑥, 𝑦⟩ ∣ (𝑦 ∈ 𝒫 (𝑀m ω) ∧ ∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))} ∈ V)
262, 25eqeltrid 2917 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → {⟨𝑥, 𝑦⟩ ∣ (∃𝑢 ∈ (𝑆𝑁)(∃𝑣 ∈ (𝑆𝑁)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ∧ 𝑦 ∈ 𝒫 (𝑀m ω))} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  {cab 2799  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  𝒫 cpw 4539  {csn 4567  cop 4573  {copab 5128  cres 5557  cfv 6355  (class class class)co 7156  ωcom 7580  1st c1st 7687  2nd c2nd 7688  m cmap 8406  𝑔cgna 32581  𝑔cgol 32582   Sat csat 32583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-om 7581
This theorem is referenced by:  satfvsuclem2  32607
  Copyright terms: Public domain W3C validator