| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omex | Structured version Visualization version GIF version | ||
| Description: The existence of omega
(the class of natural numbers). Axiom 7 of
[TakeutiZaring] p. 43. Remark
1.21 of [Schloeder] p. 3. This theorem
is proved assuming the Axiom of Infinity and in fact is equivalent to
it, as shown by the reverse derivation inf0 9574.
A finitist (someone who doesn't believe in infinity) could, without contradiction, replace the Axiom of Infinity by its denial ¬ ω ∈ V; this would lead to ω = On by omon 7854 and Fin = V (the universe of all sets) by fineqv 9210. The finitist could still develop natural number, integer, and rational number arithmetic but would be denied the real numbers (as well as much of the rest of mathematics). In deference to the finitist, much of our development is done, when possible, without invoking the Axiom of Infinity; an example is Peano's axioms peano1 7865 through peano5 7869 (which many textbooks prove more easily assuming Infinity). (Contributed by NM, 6-Aug-1994.) |
| Ref | Expression |
|---|---|
| omex | ⊢ ω ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ssex 5276 | . 2 ⊢ (ω ⊆ 𝑥 → ω ∈ V) |
| 3 | zfinf2 9595 | . . 3 ⊢ ∃𝑥(∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) | |
| 4 | ax-1 6 | . . . . 5 ⊢ ((𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥) → (𝑦 ∈ ω → (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥))) | |
| 5 | 4 | ralimi2 3061 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 → ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) |
| 6 | peano5 7869 | . . . 4 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ ω (𝑦 ∈ 𝑥 → suc 𝑦 ∈ 𝑥)) → ω ⊆ 𝑥) | |
| 7 | 5, 6 | sylan2 593 | . . 3 ⊢ ((∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) → ω ⊆ 𝑥) |
| 8 | 3, 7 | eximii 1837 | . 2 ⊢ ∃𝑥ω ⊆ 𝑥 |
| 9 | 2, 8 | exlimiiv 1931 | 1 ⊢ ω ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 suc csuc 6334 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 |
| This theorem is referenced by: axinf 9597 inf5 9598 omelon 9599 dfom3 9600 elom3 9601 oancom 9604 isfinite 9605 nnsdom 9607 omenps 9608 omensuc 9609 unbnn3 9612 noinfep 9613 ttrclse 9680 tz9.1 9682 tz9.1c 9683 xpct 9969 fseqdom 9979 fseqen 9980 aleph0 10019 alephprc 10052 alephfplem1 10057 alephfplem4 10060 iunfictbso 10067 unctb 10157 r1om 10196 cfom 10217 itunifval 10369 hsmexlem5 10383 axcc2lem 10389 acncc 10393 axcc4dom 10394 domtriomlem 10395 axdclem2 10473 fnct 10490 infinf 10519 unirnfdomd 10520 alephval2 10525 dominfac 10526 iunctb 10527 pwfseqlem4 10615 pwfseqlem5 10616 pwxpndom2 10618 pwdjundom 10620 gchac 10634 wunex2 10691 tskinf 10722 niex 10834 nnexALT 12188 ltweuz 13926 uzenom 13929 nnenom 13945 axdc4uzlem 13948 seqex 13968 rexpen 16196 cctop 22893 2ndcctbss 23342 2ndcdisj 23343 2ndcdisj2 23344 tx2ndc 23538 met2ndci 24410 snct 32637 bnj852 34911 bnj865 34913 satf 35340 satom 35343 satfv0 35345 satfvsuclem1 35346 satfv1lem 35349 satf00 35361 satf0suclem 35362 satf0suc 35363 sat1el2xp 35366 fmla 35368 fmlasuc0 35371 ex-sategoelel 35408 ex-sategoelelomsuc 35413 ex-sategoelel12 35414 prv1n 35418 bj-iomnnom 37247 iunctb2 37391 ctbssinf 37394 succlg 43317 finonex 43443 orbitex 44945 |
| Copyright terms: Public domain | W3C validator |