![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sncld | Structured version Visualization version GIF version |
Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
t1sep.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
sncld | ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | haust1 21204 | . 2 ⊢ (𝐽 ∈ Haus → 𝐽 ∈ Fre) | |
2 | t1sep.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
3 | 2 | t1sncld 21178 | . 2 ⊢ ((𝐽 ∈ Fre ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) |
4 | 1, 3 | sylan 487 | 1 ⊢ ((𝐽 ∈ Haus ∧ 𝑃 ∈ 𝑋) → {𝑃} ∈ (Clsd‘𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {csn 4210 ∪ cuni 4468 ‘cfv 5926 Clsdccld 20868 Frect1 21159 Hauscha 21160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-topgen 16151 df-top 20747 df-topon 20764 df-cld 20871 df-t1 21166 df-haus 21167 |
This theorem is referenced by: tgphaus 21967 csscld 23094 clsocv 23095 dvrec 23763 dvexp3 23786 abelth 24240 dvtanlem 33589 sncldre 39522 dirkercncflem2 40639 |
Copyright terms: Public domain | W3C validator |