MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp3 Structured version   Visualization version   GIF version

Theorem dvexp3 23640
Description: Derivative of an exponential of integer exponent. (Contributed by Mario Carneiro, 26-Feb-2015.)
Assertion
Ref Expression
dvexp3 (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elznn0nn 11336 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 cnelprrecn 9974 . . . . . 6 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → ℂ ∈ {ℝ, ℂ})
4 expcl 12815 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑥𝑁) ∈ ℂ)
54ancoms 469 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℂ) → (𝑥𝑁) ∈ ℂ)
6 c0ex 9979 . . . . . . 7 0 ∈ V
7 ovex 6633 . . . . . . 7 (𝑁 · (𝑥↑(𝑁 − 1))) ∈ V
86, 7ifex 4133 . . . . . 6 if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V
98a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ ℂ) → if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))) ∈ V)
10 dvexp2 23618 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
11 difssd 3721 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ ∖ {0}) ⊆ ℂ)
12 eqid 2626 . . . . . . . 8 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
1312cnfldtop 22492 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1412cnfldtopon 22491 . . . . . . . . 9 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
1514toponunii 20642 . . . . . . . 8 ℂ = (TopOpen‘ℂfld)
1615restid 16010 . . . . . . 7 ((TopOpen‘ℂfld) ∈ Top → ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld))
1713, 16ax-mp 5 . . . . . 6 ((TopOpen‘ℂfld) ↾t ℂ) = (TopOpen‘ℂfld)
1817eqcomi 2635 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
1912cnfldhaus 22493 . . . . . . . 8 (TopOpen‘ℂfld) ∈ Haus
20 0cn 9977 . . . . . . . 8 0 ∈ ℂ
2115sncld 21080 . . . . . . . 8 (((TopOpen‘ℂfld) ∈ Haus ∧ 0 ∈ ℂ) → {0} ∈ (Clsd‘(TopOpen‘ℂfld)))
2219, 20, 21mp2an 707 . . . . . . 7 {0} ∈ (Clsd‘(TopOpen‘ℂfld))
2315cldopn 20740 . . . . . . 7 ({0} ∈ (Clsd‘(TopOpen‘ℂfld)) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
2422, 23ax-mp 5 . . . . . 6 (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)
2524a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
263, 5, 9, 10, 11, 18, 12, 25dvmptres 23627 . . . 4 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
27 ifid 4102 . . . . . 6 if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1)))
28 id 22 . . . . . . . . 9 (𝑁 = 0 → 𝑁 = 0)
29 oveq1 6612 . . . . . . . . . 10 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
3029oveq2d 6621 . . . . . . . . 9 (𝑁 = 0 → (𝑥↑(𝑁 − 1)) = (𝑥↑(0 − 1)))
3128, 30oveq12d 6623 . . . . . . . 8 (𝑁 = 0 → (𝑁 · (𝑥↑(𝑁 − 1))) = (0 · (𝑥↑(0 − 1))))
32 eldifsn 4292 . . . . . . . . . . 11 (𝑥 ∈ (ℂ ∖ {0}) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
33 0z 11333 . . . . . . . . . . . . 13 0 ∈ ℤ
34 peano2zm 11365 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
3533, 34ax-mp 5 . . . . . . . . . . . 12 (0 − 1) ∈ ℤ
36 expclz 12822 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ∧ (0 − 1) ∈ ℤ) → (𝑥↑(0 − 1)) ∈ ℂ)
3735, 36mp3an3 1410 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (𝑥↑(0 − 1)) ∈ ℂ)
3832, 37sylbi 207 . . . . . . . . . 10 (𝑥 ∈ (ℂ ∖ {0}) → (𝑥↑(0 − 1)) ∈ ℂ)
3938adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(0 − 1)) ∈ ℂ)
4039mul02d 10179 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (0 · (𝑥↑(0 − 1))) = 0)
4131, 40sylan9eqr 2682 . . . . . . 7 (((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑁 = 0) → (𝑁 · (𝑥↑(𝑁 − 1))) = 0)
4241ifeq1da 4093 . . . . . 6 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → if(𝑁 = 0, (𝑁 · (𝑥↑(𝑁 − 1))), (𝑁 · (𝑥↑(𝑁 − 1)))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))
4327, 42syl5eqr 2674 . . . . 5 ((𝑁 ∈ ℕ0𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · (𝑥↑(𝑁 − 1))) = if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1)))))
4443mpteq2dva 4709 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ if(𝑁 = 0, 0, (𝑁 · (𝑥↑(𝑁 − 1))))))
4526, 44eqtr4d 2663 . . 3 (𝑁 ∈ ℕ0 → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
46 eldifi 3715 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
4746adantl 482 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
48 simpll 789 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑁 ∈ ℝ)
4948recnd 10013 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑁 ∈ ℂ)
50 nnnn0 11244 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
5150ad2antlr 762 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℕ0)
52 expneg2 12806 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝑥𝑁) = (1 / (𝑥↑-𝑁)))
5347, 49, 51, 52syl3anc 1323 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥𝑁) = (1 / (𝑥↑-𝑁)))
5453mpteq2dva 4709 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁)) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁))))
5554oveq2d 6621 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁)))))
562a1i 11 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → ℂ ∈ {ℝ, ℂ})
57 eldifsni 4294 . . . . . . . 8 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
5857adantl 482 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ≠ 0)
59 nnz 11344 . . . . . . . 8 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
6059ad2antlr 762 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℤ)
6147, 58, 60expclzd 12950 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ∈ ℂ)
6247, 58, 60expne0d 12951 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ≠ 0)
63 eldifsn 4292 . . . . . 6 ((𝑥↑-𝑁) ∈ (ℂ ∖ {0}) ↔ ((𝑥↑-𝑁) ∈ ℂ ∧ (𝑥↑-𝑁) ≠ 0))
6461, 62, 63sylanbrc 697 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑-𝑁) ∈ (ℂ ∖ {0}))
65 ovex 6633 . . . . . 6 (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V
6665a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V)
67 simpr 477 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ (ℂ ∖ {0}))
68 eldifsn 4292 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) ↔ (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
6967, 68sylib 208 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (𝑦 ∈ ℂ ∧ 𝑦 ≠ 0))
70 reccl 10637 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑦 ≠ 0) → (1 / 𝑦) ∈ ℂ)
7169, 70syl 17 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
72 negex 10224 . . . . . 6 -(1 / (𝑦↑2)) ∈ V
7372a1i 11 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(1 / (𝑦↑2)) ∈ V)
74 simpr 477 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
7550ad2antlr 762 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → -𝑁 ∈ ℕ0)
7674, 75expcld 12945 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (𝑥↑-𝑁) ∈ ℂ)
7765a1i 11 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ ℂ) → (-𝑁 · (𝑥↑(-𝑁 − 1))) ∈ V)
78 dvexp 23617 . . . . . . 7 (-𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
7978adantl 482 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑-𝑁))) = (𝑥 ∈ ℂ ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
80 difssd 3721 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ ∖ {0}) ⊆ ℂ)
8124a1i 11 . . . . . 6 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld))
8256, 76, 77, 79, 80, 18, 12, 81dvmptres 23627 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥↑-𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-𝑁 · (𝑥↑(-𝑁 − 1)))))
83 ax-1cn 9939 . . . . . 6 1 ∈ ℂ
84 dvrec 23619 . . . . . 6 (1 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
8583, 84mp1i 13 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
86 oveq2 6613 . . . . 5 (𝑦 = (𝑥↑-𝑁) → (1 / 𝑦) = (1 / (𝑥↑-𝑁)))
87 oveq1 6612 . . . . . . 7 (𝑦 = (𝑥↑-𝑁) → (𝑦↑2) = ((𝑥↑-𝑁)↑2))
8887oveq2d 6621 . . . . . 6 (𝑦 = (𝑥↑-𝑁) → (1 / (𝑦↑2)) = (1 / ((𝑥↑-𝑁)↑2)))
8988negeqd 10220 . . . . 5 (𝑦 = (𝑥↑-𝑁) → -(1 / (𝑦↑2)) = -(1 / ((𝑥↑-𝑁)↑2)))
9056, 56, 64, 66, 71, 73, 82, 85, 86, 89dvmptco 23636 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (1 / (𝑥↑-𝑁)))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))))
91 2z 11354 . . . . . . . . . . . 12 2 ∈ ℤ
9291a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 2 ∈ ℤ)
93 expmulz 12843 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (-𝑁 ∈ ℤ ∧ 2 ∈ ℤ)) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2))
9447, 58, 60, 92, 93syl22anc 1324 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) = ((𝑥↑-𝑁)↑2))
9594eqcomd 2632 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑥↑-𝑁)↑2) = (𝑥↑(-𝑁 · 2)))
9695oveq2d 6621 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (1 / ((𝑥↑-𝑁)↑2)) = (1 / (𝑥↑(-𝑁 · 2))))
9796negeqd 10220 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -(1 / ((𝑥↑-𝑁)↑2)) = -(1 / (𝑥↑(-𝑁 · 2))))
98 peano2zm 11365 . . . . . . . . . 10 (-𝑁 ∈ ℤ → (-𝑁 − 1) ∈ ℤ)
9960, 98syl 17 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − 1) ∈ ℤ)
10047, 58, 99expclzd 12950 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 − 1)) ∈ ℂ)
10149, 100mulneg1d 10428 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · (𝑥↑(-𝑁 − 1))) = -(𝑁 · (𝑥↑(-𝑁 − 1))))
10297, 101oveq12d 6623 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))))
103 zmulcl 11371 . . . . . . . . . 10 ((-𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (-𝑁 · 2) ∈ ℤ)
10460, 91, 103sylancl 693 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) ∈ ℤ)
10547, 58, 104expclzd 12950 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) ∈ ℂ)
10647, 58, 104expne0d 12951 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑(-𝑁 · 2)) ≠ 0)
107105, 106reccld 10739 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (1 / (𝑥↑(-𝑁 · 2))) ∈ ℂ)
10849, 100mulcld 10005 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · (𝑥↑(-𝑁 − 1))) ∈ ℂ)
109107, 108mul2negd 10430 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / (𝑥↑(-𝑁 · 2))) · -(𝑁 · (𝑥↑(-𝑁 − 1)))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))))
110107, 49, 100mul12d 10190 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))))
11147, 58, 104, 99expsubd 12956 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))))
112 nncn 10973 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ → -𝑁 ∈ ℂ)
113112ad2antlr 762 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → -𝑁 ∈ ℂ)
11483a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → 1 ∈ ℂ)
115104zcnd 11427 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) ∈ ℂ)
116113, 114, 115sub32d 10369 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − 1) − (-𝑁 · 2)) = ((-𝑁 − (-𝑁 · 2)) − 1))
117113times2d 11221 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) = (-𝑁 + -𝑁))
118113, 49negsubd 10343 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 + -𝑁) = (-𝑁𝑁))
119117, 118eqtrd 2660 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 · 2) = (-𝑁𝑁))
120119oveq2d 6621 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁 · 2)) = (-𝑁 − (-𝑁𝑁)))
121113, 49nncand 10342 . . . . . . . . . . . . 13 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁𝑁)) = 𝑁)
122120, 121eqtrd 2660 . . . . . . . . . . . 12 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-𝑁 − (-𝑁 · 2)) = 𝑁)
123122oveq1d 6620 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − (-𝑁 · 2)) − 1) = (𝑁 − 1))
124116, 123eqtrd 2660 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((-𝑁 − 1) − (-𝑁 · 2)) = (𝑁 − 1))
125124oveq2d 6621 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑥↑((-𝑁 − 1) − (-𝑁 · 2))) = (𝑥↑(𝑁 − 1)))
126100, 105, 106divrec2d 10750 . . . . . . . . 9 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((𝑥↑(-𝑁 − 1)) / (𝑥↑(-𝑁 · 2))) = ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))))
127111, 125, 1263eqtr3rd 2669 . . . . . . . 8 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1))) = (𝑥↑(𝑁 − 1)))
128127oveq2d 6621 . . . . . . 7 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (𝑁 · ((1 / (𝑥↑(-𝑁 · 2))) · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
129110, 128eqtrd 2660 . . . . . 6 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → ((1 / (𝑥↑(-𝑁 · 2))) · (𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
130102, 109, 1293eqtrd 2664 . . . . 5 (((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑥 ∈ (ℂ ∖ {0})) → (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1)))) = (𝑁 · (𝑥↑(𝑁 − 1))))
131130mpteq2dva 4709 . . . 4 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝑥 ∈ (ℂ ∖ {0}) ↦ (-(1 / ((𝑥↑-𝑁)↑2)) · (-𝑁 · (𝑥↑(-𝑁 − 1))))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
13255, 90, 1313eqtrd 2664 . . 3 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
13345, 132jaoi 394 . 2 ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
1341, 133sylbi 207 1 (𝑁 ∈ ℤ → (ℂ D (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑥𝑁))) = (𝑥 ∈ (ℂ ∖ {0}) ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1992  wne 2796  Vcvv 3191  cdif 3557  ifcif 4063  {csn 4153  {cpr 4155  cmpt 4678  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212   / cdiv 10629  cn 10965  2c2 11015  0cn0 11237  cz 11322  cexp 12797  t crest 15997  TopOpenctopn 15998  fldccnfld 19660  Topctop 20612  Clsdccld 20725  Hauscha 21017   D cdv 23528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959  ax-addf 9960  ax-mulf 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-of 6851  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-2o 7507  df-oadd 7510  df-er 7688  df-map 7805  df-pm 7806  df-ixp 7854  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-fi 8262  df-sup 8293  df-inf 8294  df-oi 8360  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-icc 12121  df-fz 12266  df-fzo 12404  df-seq 12739  df-exp 12798  df-hash 13055  df-cj 13768  df-re 13769  df-im 13770  df-sqrt 13904  df-abs 13905  df-struct 15778  df-ndx 15779  df-slot 15780  df-base 15781  df-sets 15782  df-ress 15783  df-plusg 15870  df-mulr 15871  df-starv 15872  df-sca 15873  df-vsca 15874  df-ip 15875  df-tset 15876  df-ple 15877  df-ds 15880  df-unif 15881  df-hom 15882  df-cco 15883  df-rest 15999  df-topn 16000  df-0g 16018  df-gsum 16019  df-topgen 16020  df-pt 16021  df-prds 16024  df-xrs 16078  df-qtop 16083  df-imas 16084  df-xps 16086  df-mre 16162  df-mrc 16163  df-acs 16165  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-submnd 17252  df-mulg 17457  df-cntz 17666  df-cmn 18111  df-psmet 19652  df-xmet 19653  df-met 19654  df-bl 19655  df-mopn 19656  df-fbas 19657  df-fg 19658  df-cnfld 19661  df-top 20616  df-bases 20617  df-topon 20618  df-topsp 20619  df-cld 20728  df-ntr 20729  df-cls 20730  df-nei 20807  df-lp 20845  df-perf 20846  df-cn 20936  df-cnp 20937  df-t1 21023  df-haus 21024  df-tx 21270  df-hmeo 21463  df-fil 21555  df-fm 21647  df-flim 21648  df-flf 21649  df-xms 22030  df-ms 22031  df-tms 22032  df-cncf 22584  df-limc 23531  df-dv 23532
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator