![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supgtoreq | Structured version Visualization version GIF version |
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
Ref | Expression |
---|---|
supgtoreq.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
supgtoreq.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
supgtoreq.3 | ⊢ (𝜑 → 𝐵 ∈ Fin) |
supgtoreq.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐵) |
supgtoreq.5 | ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
supgtoreq | ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supgtoreq.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐵) | |
2 | supgtoreq.1 | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
3 | supgtoreq.2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
4 | supgtoreq.3 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
5 | ne0i 3954 | . . . . . . . . 9 ⊢ (𝐶 ∈ 𝐵 → 𝐵 ≠ ∅) | |
6 | 1, 5 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ≠ ∅) |
7 | fisup2g 8415 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) | |
8 | 2, 4, 6, 3, 7 | syl13anc 1368 | . . . . . . 7 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
9 | ssrexv 3700 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)))) | |
10 | 3, 8, 9 | sylc 65 | . . . . . 6 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧))) |
11 | 2, 10 | supub 8406 | . . . . 5 ⊢ (𝜑 → (𝐶 ∈ 𝐵 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
12 | 1, 11 | mpd 15 | . . . 4 ⊢ (𝜑 → ¬ sup(𝐵, 𝐴, 𝑅)𝑅𝐶) |
13 | supgtoreq.5 | . . . . 5 ⊢ (𝜑 → 𝑆 = sup(𝐵, 𝐴, 𝑅)) | |
14 | 13 | breq1d 4695 | . . . 4 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ sup(𝐵, 𝐴, 𝑅)𝑅𝐶)) |
15 | 12, 14 | mtbird 314 | . . 3 ⊢ (𝜑 → ¬ 𝑆𝑅𝐶) |
16 | fisupcl 8416 | . . . . . . . 8 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) | |
17 | 2, 4, 6, 3, 16 | syl13anc 1368 | . . . . . . 7 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐵) |
18 | 3, 17 | sseldd 3637 | . . . . . 6 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) ∈ 𝐴) |
19 | 13, 18 | eqeltrd 2730 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
20 | 3, 1 | sseldd 3637 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
21 | sotric 5090 | . . . . 5 ⊢ ((𝑅 Or 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆))) | |
22 | 2, 19, 20, 21 | syl12anc 1364 | . . . 4 ⊢ (𝜑 → (𝑆𝑅𝐶 ↔ ¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆))) |
23 | orcom 401 | . . . . . 6 ⊢ ((𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆 ∨ 𝑆 = 𝐶)) | |
24 | eqcom 2658 | . . . . . . 7 ⊢ (𝑆 = 𝐶 ↔ 𝐶 = 𝑆) | |
25 | 24 | orbi2i 540 | . . . . . 6 ⊢ ((𝐶𝑅𝑆 ∨ 𝑆 = 𝐶) ↔ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
26 | 23, 25 | bitri 264 | . . . . 5 ⊢ ((𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
27 | 26 | notbii 309 | . . . 4 ⊢ (¬ (𝑆 = 𝐶 ∨ 𝐶𝑅𝑆) ↔ ¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
28 | 22, 27 | syl6rbb 277 | . . 3 ⊢ (𝜑 → (¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆) ↔ 𝑆𝑅𝐶)) |
29 | 15, 28 | mtbird 314 | . 2 ⊢ (𝜑 → ¬ ¬ (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
30 | 29 | notnotrd 128 | 1 ⊢ (𝜑 → (𝐶𝑅𝑆 ∨ 𝐶 = 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∀wral 2941 ∃wrex 2942 ⊆ wss 3607 ∅c0 3948 class class class wbr 4685 Or wor 5063 Fincfn 7997 supcsup 8387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-om 7108 df-1o 7605 df-er 7787 df-en 7998 df-fin 8001 df-sup 8389 |
This theorem is referenced by: infltoreq 8449 supfirege 11047 |
Copyright terms: Public domain | W3C validator |