Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss3 Structured version   Visualization version   GIF version

Theorem tgss3 20771
 Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss3 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))

Proof of Theorem tgss3
StepHypRef Expression
1 bastg 20751 . . . 4 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
21adantr 481 . . 3 ((𝐵𝑉𝐶𝑊) → 𝐵 ⊆ (topGen‘𝐵))
3 sstr2 3602 . . 3 (𝐵 ⊆ (topGen‘𝐵) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶)))
42, 3syl 17 . 2 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶)))
5 fvex 6188 . . . 4 (topGen‘𝐶) ∈ V
6 tgss 20753 . . . 4 (((topGen‘𝐶) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐶)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)))
75, 6mpan 705 . . 3 (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)))
8 tgidm 20765 . . . . 5 (𝐶𝑊 → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶))
98adantl 482 . . . 4 ((𝐵𝑉𝐶𝑊) → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶))
109sseq2d 3625 . . 3 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)) ↔ (topGen‘𝐵) ⊆ (topGen‘𝐶)))
117, 10syl5ib 234 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)))
124, 11impbid 202 1 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1481   ∈ wcel 1988  Vcvv 3195   ⊆ wss 3567  ‘cfv 5876  topGenctg 16079 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-iota 5839  df-fun 5878  df-fv 5884  df-topgen 16085 This theorem is referenced by:  tgss2  20772  2basgen  20775  isfne4b  32311
 Copyright terms: Public domain W3C validator