MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uc1pval Structured version   Visualization version   GIF version

Theorem uc1pval 24733
Description: Value of the set of unitic polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
uc1pval.p 𝑃 = (Poly1𝑅)
uc1pval.b 𝐵 = (Base‘𝑃)
uc1pval.z 0 = (0g𝑃)
uc1pval.d 𝐷 = ( deg1𝑅)
uc1pval.c 𝐶 = (Unic1p𝑅)
uc1pval.u 𝑈 = (Unit‘𝑅)
Assertion
Ref Expression
uc1pval 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Distinct variable groups:   𝐵,𝑓   𝐷,𝑓   𝑅,𝑓   𝑈,𝑓   0 ,𝑓
Allowed substitution hints:   𝐶(𝑓)   𝑃(𝑓)

Proof of Theorem uc1pval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 uc1pval.c . 2 𝐶 = (Unic1p𝑅)
2 fveq2 6670 . . . . . . . 8 (𝑟 = 𝑅 → (Poly1𝑟) = (Poly1𝑅))
3 uc1pval.p . . . . . . . 8 𝑃 = (Poly1𝑅)
42, 3syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (Poly1𝑟) = 𝑃)
54fveq2d 6674 . . . . . 6 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = (Base‘𝑃))
6 uc1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
75, 6syl6eqr 2874 . . . . 5 (𝑟 = 𝑅 → (Base‘(Poly1𝑟)) = 𝐵)
84fveq2d 6674 . . . . . . . 8 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = (0g𝑃))
9 uc1pval.z . . . . . . . 8 0 = (0g𝑃)
108, 9syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (0g‘(Poly1𝑟)) = 0 )
1110neeq2d 3076 . . . . . 6 (𝑟 = 𝑅 → (𝑓 ≠ (0g‘(Poly1𝑟)) ↔ 𝑓0 ))
12 fveq2 6670 . . . . . . . . . 10 (𝑟 = 𝑅 → ( deg1𝑟) = ( deg1𝑅))
13 uc1pval.d . . . . . . . . . 10 𝐷 = ( deg1𝑅)
1412, 13syl6eqr 2874 . . . . . . . . 9 (𝑟 = 𝑅 → ( deg1𝑟) = 𝐷)
1514fveq1d 6672 . . . . . . . 8 (𝑟 = 𝑅 → (( deg1𝑟)‘𝑓) = (𝐷𝑓))
1615fveq2d 6674 . . . . . . 7 (𝑟 = 𝑅 → ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) = ((coe1𝑓)‘(𝐷𝑓)))
17 fveq2 6670 . . . . . . . 8 (𝑟 = 𝑅 → (Unit‘𝑟) = (Unit‘𝑅))
18 uc1pval.u . . . . . . . 8 𝑈 = (Unit‘𝑅)
1917, 18syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → (Unit‘𝑟) = 𝑈)
2016, 19eleq12d 2907 . . . . . 6 (𝑟 = 𝑅 → (((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟) ↔ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈))
2111, 20anbi12d 632 . . . . 5 (𝑟 = 𝑅 → ((𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟)) ↔ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)))
227, 21rabeqbidv 3485 . . . 4 (𝑟 = 𝑅 → {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))} = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
23 df-uc1p 24725 . . . 4 Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘(( deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
246fvexi 6684 . . . . 5 𝐵 ∈ V
2524rabex 5235 . . . 4 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ∈ V
2622, 23, 25fvmpt 6768 . . 3 (𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
27 fvprc 6663 . . . 4 𝑅 ∈ V → (Unic1p𝑅) = ∅)
28 ssrab2 4056 . . . . . 6 {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ 𝐵
29 fvprc 6663 . . . . . . . . . 10 𝑅 ∈ V → (Poly1𝑅) = ∅)
303, 29syl5eq 2868 . . . . . . . . 9 𝑅 ∈ V → 𝑃 = ∅)
3130fveq2d 6674 . . . . . . . 8 𝑅 ∈ V → (Base‘𝑃) = (Base‘∅))
32 base0 16536 . . . . . . . 8 ∅ = (Base‘∅)
3331, 32syl6eqr 2874 . . . . . . 7 𝑅 ∈ V → (Base‘𝑃) = ∅)
346, 33syl5eq 2868 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
3528, 34sseqtrid 4019 . . . . 5 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅)
36 ss0 4352 . . . . 5 ({𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} ⊆ ∅ → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3735, 36syl 17 . . . 4 𝑅 ∈ V → {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)} = ∅)
3827, 37eqtr4d 2859 . . 3 𝑅 ∈ V → (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)})
3926, 38pm2.61i 184 . 2 (Unic1p𝑅) = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
401, 39eqtri 2844 1 𝐶 = {𝑓𝐵 ∣ (𝑓0 ∧ ((coe1𝑓)‘(𝐷𝑓)) ∈ 𝑈)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  wss 3936  c0 4291  cfv 6355  Basecbs 16483  0gc0g 16713  Unitcui 19389  Poly1cpl1 20345  coe1cco1 20346   deg1 cdg1 24648  Unic1pcuc1p 24720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-iota 6314  df-fun 6357  df-fv 6363  df-slot 16487  df-base 16489  df-uc1p 24725
This theorem is referenced by:  isuc1p  24734
  Copyright terms: Public domain W3C validator