![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unbnn | Structured version Visualization version GIF version |
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 8594 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
Ref | Expression |
---|---|
unbnn | ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8043 | . . . 4 ⊢ (ω ∈ V → (𝐴 ⊆ ω → 𝐴 ≼ ω)) | |
2 | 1 | imp 444 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ≼ ω) |
3 | 2 | 3adant3 1101 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≼ ω) |
4 | simp1 1081 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ω ∈ V) | |
5 | ssexg 4837 | . . . . 5 ⊢ ((𝐴 ⊆ ω ∧ ω ∈ V) → 𝐴 ∈ V) | |
6 | 5 | ancoms 468 | . . . 4 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω) → 𝐴 ∈ V) |
7 | 6 | 3adant3 1101 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ∈ V) |
8 | eqid 2651 | . . . . 5 ⊢ (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω) = (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω) | |
9 | 8 | unblem4 8256 | . . . 4 ⊢ ((𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) |
10 | 9 | 3adant1 1099 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) |
11 | f1dom2g 8015 | . . 3 ⊢ ((ω ∈ V ∧ 𝐴 ∈ V ∧ (rec((𝑧 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑧)), ∩ 𝐴) ↾ ω):ω–1-1→𝐴) → ω ≼ 𝐴) | |
12 | 4, 7, 10, 11 | syl3anc 1366 | . 2 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → ω ≼ 𝐴) |
13 | sbth 8121 | . 2 ⊢ ((𝐴 ≼ ω ∧ ω ≼ 𝐴) → 𝐴 ≈ ω) | |
14 | 3, 12, 13 | syl2anc 694 | 1 ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 ∈ wcel 2030 ∀wral 2941 ∃wrex 2942 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 ∩ cint 4507 class class class wbr 4685 ↦ cmpt 4762 ↾ cres 5145 suc csuc 5763 –1-1→wf1 5923 ωcom 7107 reccrdg 7550 ≈ cen 7994 ≼ cdom 7995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-en 7998 df-dom 7999 |
This theorem is referenced by: unbnn2 8258 isfinite2 8259 unbnn3 8594 |
Copyright terms: Public domain | W3C validator |