Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uncf Structured version   Visualization version   GIF version

Theorem uncf 34886
Description: Functional property of uncurrying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
uncf (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)

Proof of Theorem uncf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ffvelrn 6849 . . . . . 6 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (𝐶m 𝐵))
2 elmapi 8428 . . . . . 6 ((𝐹𝑥) ∈ (𝐶m 𝐵) → (𝐹𝑥):𝐵𝐶)
31, 2syl 17 . . . . 5 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝐹𝑥):𝐵𝐶)
43ffvelrnda 6851 . . . 4 (((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → ((𝐹𝑥)‘𝑦) ∈ 𝐶)
54anasss 469 . . 3 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ (𝑥𝐴𝑦𝐵)) → ((𝐹𝑥)‘𝑦) ∈ 𝐶)
65ralrimivva 3191 . 2 (𝐹:𝐴⟶(𝐶m 𝐵) → ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶)
7 df-unc 7934 . . . . 5 uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
8 df-br 5067 . . . . . . . . . . 11 (𝑦(𝐹𝑥)𝑧 ↔ ⟨𝑦, 𝑧⟩ ∈ (𝐹𝑥))
9 elfvdm 6702 . . . . . . . . . . 11 (⟨𝑦, 𝑧⟩ ∈ (𝐹𝑥) → 𝑥 ∈ dom 𝐹)
108, 9sylbi 219 . . . . . . . . . 10 (𝑦(𝐹𝑥)𝑧𝑥 ∈ dom 𝐹)
11 fdm 6522 . . . . . . . . . . 11 (𝐹:𝐴⟶(𝐶m 𝐵) → dom 𝐹 = 𝐴)
1211eleq2d 2898 . . . . . . . . . 10 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑥 ∈ dom 𝐹𝑥𝐴))
1310, 12syl5ib 246 . . . . . . . . 9 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧𝑥𝐴))
1413pm4.71rd 565 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑥𝐴𝑦(𝐹𝑥)𝑧)))
15 elmapfun 8430 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (𝐶m 𝐵) → Fun (𝐹𝑥))
16 funbrfv2b 6723 . . . . . . . . . . 11 (Fun (𝐹𝑥) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧)))
171, 15, 163syl 18 . . . . . . . . . 10 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧)))
18 fdm 6522 . . . . . . . . . . . . 13 ((𝐹𝑥):𝐵𝐶 → dom (𝐹𝑥) = 𝐵)
191, 2, 183syl 18 . . . . . . . . . . . 12 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → dom (𝐹𝑥) = 𝐵)
2019eleq2d 2898 . . . . . . . . . . 11 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦 ∈ dom (𝐹𝑥) ↔ 𝑦𝐵))
21 eqcom 2828 . . . . . . . . . . . 12 (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦))
2221a1i 11 . . . . . . . . . . 11 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (((𝐹𝑥)‘𝑦) = 𝑧𝑧 = ((𝐹𝑥)‘𝑦)))
2320, 22anbi12d 632 . . . . . . . . . 10 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → ((𝑦 ∈ dom (𝐹𝑥) ∧ ((𝐹𝑥)‘𝑦) = 𝑧) ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2417, 23bitrd 281 . . . . . . . . 9 ((𝐹:𝐴⟶(𝐶m 𝐵) ∧ 𝑥𝐴) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2524pm5.32da 581 . . . . . . . 8 (𝐹:𝐴⟶(𝐶m 𝐵) → ((𝑥𝐴𝑦(𝐹𝑥)𝑧) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦)))))
2614, 25bitrd 281 . . . . . . 7 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦)))))
27 anass 471 . . . . . . 7 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = ((𝐹𝑥)‘𝑦))))
2826, 27syl6bbr 291 . . . . . 6 (𝐹:𝐴⟶(𝐶m 𝐵) → (𝑦(𝐹𝑥)𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))))
2928oprabbidv 7220 . . . . 5 (𝐹:𝐴⟶(𝐶m 𝐵) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))})
307, 29syl5eq 2868 . . . 4 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))})
3130feq1d 6499 . . 3 (𝐹:𝐴⟶(𝐶m 𝐵) → (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}:(𝐴 × 𝐵)⟶𝐶))
32 df-mpo 7161 . . . . 5 (𝑥𝐴, 𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}
3332eqcomi 2830 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))} = (𝑥𝐴, 𝑦𝐵 ↦ ((𝐹𝑥)‘𝑦))
3433fmpo 7766 . . 3 (∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶 ↔ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = ((𝐹𝑥)‘𝑦))}:(𝐴 × 𝐵)⟶𝐶)
3531, 34syl6bbr 291 . 2 (𝐹:𝐴⟶(𝐶m 𝐵) → (uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥)‘𝑦) ∈ 𝐶))
366, 35mpbird 259 1 (𝐹:𝐴⟶(𝐶m 𝐵) → uncurry 𝐹:(𝐴 × 𝐵)⟶𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  cop 4573   class class class wbr 5066   × cxp 5553  dom cdm 5555  Fun wfun 6349  wf 6351  cfv 6355  (class class class)co 7156  {coprab 7157  cmpo 7158  uncurry cunc 7932  m cmap 8406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-unc 7934  df-map 8408
This theorem is referenced by:  curunc  34889  matunitlindflem2  34904
  Copyright terms: Public domain W3C validator