MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwpc Structured version   Visualization version   GIF version

Theorem vdwpc 16316
Description: The predicate " The coloring 𝐹 contains a polychromatic 𝑀-tuple of AP's of length 𝐾". A polychromatic 𝑀-tuple of AP's is a set of AP's with the same base point but different step lengths, such that each individual AP is monochromatic, but the AP's all have mutually distinct colors. (The common basepoint is not required to have the same color as any of the AP's.) (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
vdwpc.4 (𝜑𝑀 ∈ ℕ)
vdwpc.5 𝐽 = (1...𝑀)
Assertion
Ref Expression
vdwpc (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
Distinct variable groups:   𝑎,𝑑,𝑖,𝐹   𝐾,𝑎,𝑑,𝑖   𝐽,𝑑,𝑖   𝑀,𝑎,𝑑,𝑖
Allowed substitution hints:   𝜑(𝑖,𝑎,𝑑)   𝑅(𝑖,𝑎,𝑑)   𝐽(𝑎)   𝑋(𝑖,𝑎,𝑑)

Proof of Theorem vdwpc
Dummy variables 𝑓 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwpc.4 . 2 (𝜑𝑀 ∈ ℕ)
2 vdwmc.2 . 2 (𝜑𝐾 ∈ ℕ0)
3 vdwmc.3 . . 3 (𝜑𝐹:𝑋𝑅)
4 vdwmc.1 . . 3 𝑋 ∈ V
5 fex 6989 . . 3 ((𝐹:𝑋𝑅𝑋 ∈ V) → 𝐹 ∈ V)
63, 4, 5sylancl 588 . 2 (𝜑𝐹 ∈ V)
7 df-br 5067 . . . 4 (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ PolyAP )
8 df-vdwpc 16306 . . . . 5 PolyAP = {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)}
98eleq2i 2904 . . . 4 (⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ PolyAP ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)})
107, 9bitri 277 . . 3 (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)})
11 simp1 1132 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑚 = 𝑀)
1211oveq2d 7172 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (1...𝑚) = (1...𝑀))
13 vdwpc.5 . . . . . . . 8 𝐽 = (1...𝑀)
1412, 13syl6eqr 2874 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (1...𝑚) = 𝐽)
1514oveq2d 7172 . . . . . 6 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (ℕ ↑m (1...𝑚)) = (ℕ ↑m 𝐽))
16 simp2 1133 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑘 = 𝐾)
1716fveq2d 6674 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (AP‘𝑘) = (AP‘𝐾))
1817oveqd 7173 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) = ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
19 simp3 1134 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑓 = 𝐹)
2019cnveqd 5746 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → 𝑓 = 𝐹)
2119fveq1d 6672 . . . . . . . . . . 11 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑓‘(𝑎 + (𝑑𝑖))) = (𝐹‘(𝑎 + (𝑑𝑖))))
2221sneqd 4579 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → {(𝑓‘(𝑎 + (𝑑𝑖)))} = {(𝐹‘(𝑎 + (𝑑𝑖)))})
2320, 22imaeq12d 5930 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) = (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}))
2418, 23sseq12d 4000 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))})))
2514, 24raleqbidv 3401 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))})))
2614, 21mpteq12dv 5151 . . . . . . . . . 10 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖)))))
2726rneqd 5808 . . . . . . . . 9 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖)))) = ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖)))))
2827fveq2d 6674 . . . . . . . 8 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))))
2928, 11eqeq12d 2837 . . . . . . 7 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚 ↔ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀))
3025, 29anbi12d 632 . . . . . 6 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → ((∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ (∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3115, 30rexeqbidv 3402 . . . . 5 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3231rexbidv 3297 . . . 4 ((𝑚 = 𝑀𝑘 = 𝐾𝑓 = 𝐹) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3332eloprabga 7261 . . 3 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝐹 ∈ V) → (⟨⟨𝑀, 𝐾⟩, 𝐹⟩ ∈ {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)} ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
3410, 33syl5bb 285 . 2 ((𝑀 ∈ ℕ ∧ 𝐾 ∈ ℕ0𝐹 ∈ V) → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
351, 2, 6, 34syl3anc 1367 1 (𝜑 → (⟨𝑀, 𝐾⟩ PolyAP 𝐹 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m 𝐽)(∀𝑖𝐽 ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐹 “ {(𝐹‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖𝐽 ↦ (𝐹‘(𝑎 + (𝑑𝑖))))) = 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  Vcvv 3494  wss 3936  {csn 4567  cop 4573   class class class wbr 5066  cmpt 5146  ccnv 5554  ran crn 5556  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  {coprab 7157  m cmap 8406  1c1 10538   + caddc 10540  cn 11638  0cn0 11898  ...cfz 12893  chash 13691  APcvdwa 16301   PolyAP cvdwp 16303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-vdwpc 16306
This theorem is referenced by:  vdwlem6  16322  vdwlem7  16323  vdwlem8  16324  vdwlem11  16327
  Copyright terms: Public domain W3C validator