MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem6 Structured version   Visualization version   GIF version

Theorem vdwlem6 15471
Description: Lemma for vdw 15479. (Contributed by Mario Carneiro, 13-Sep-2014.)
Hypotheses
Ref Expression
vdwlem3.v (𝜑𝑉 ∈ ℕ)
vdwlem3.w (𝜑𝑊 ∈ ℕ)
vdwlem4.r (𝜑𝑅 ∈ Fin)
vdwlem4.h (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
vdwlem4.f 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
vdwlem7.m (𝜑𝑀 ∈ ℕ)
vdwlem7.g (𝜑𝐺:(1...𝑊)⟶𝑅)
vdwlem7.k (𝜑𝐾 ∈ (ℤ‘2))
vdwlem7.a (𝜑𝐴 ∈ ℕ)
vdwlem7.d (𝜑𝐷 ∈ ℕ)
vdwlem7.s (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
vdwlem6.b (𝜑𝐵 ∈ ℕ)
vdwlem6.e (𝜑𝐸:(1...𝑀)⟶ℕ)
vdwlem6.s (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
vdwlem6.j 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
vdwlem6.r (𝜑 → (#‘ran 𝐽) = 𝑀)
vdwlem6.t 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
vdwlem6.p 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
Assertion
Ref Expression
vdwlem6 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑖,𝑗,𝑥,𝑦,𝐺   𝑖,𝐾,𝑗,𝑥,𝑦   𝑖,𝐽,𝑗,𝑥   𝑃,𝑖,𝑥   𝜑,𝑖,𝑗,𝑥,𝑦   𝑅,𝑖,𝑥,𝑦   𝐵,𝑖,𝑗,𝑥,𝑦   𝑖,𝐻,𝑥,𝑦   𝑖,𝑀,𝑗,𝑥,𝑦   𝐷,𝑗,𝑥,𝑦   𝑖,𝐸,𝑗,𝑥,𝑦   𝑖,𝑊,𝑗,𝑥,𝑦   𝑇,𝑖,𝑥   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖)   𝑃(𝑦,𝑗)   𝑅(𝑗)   𝑇(𝑦,𝑗)   𝐹(𝑥,𝑦,𝑖,𝑗)   𝐻(𝑗)   𝐽(𝑦)   𝑉(𝑖,𝑗)

Proof of Theorem vdwlem6
Dummy variables 𝑚 𝑛 𝑧 𝑎 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6095 . . . . . . 7 (𝐺‘(𝐵 + (𝐸𝑖))) ∈ V
2 vdwlem6.j . . . . . . 7 𝐽 = (𝑖 ∈ (1...𝑀) ↦ (𝐺‘(𝐵 + (𝐸𝑖))))
31, 2fnmpti 5918 . . . . . 6 𝐽 Fn (1...𝑀)
4 fvelrnb 6135 . . . . . 6 (𝐽 Fn (1...𝑀) → ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵)))
53, 4ax-mp 5 . . . . 5 ((𝐺𝐵) ∈ ran 𝐽 ↔ ∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵))
6 vdwlem4.r . . . . . . . 8 (𝜑𝑅 ∈ Fin)
76adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑅 ∈ Fin)
8 vdwlem7.k . . . . . . . . 9 (𝜑𝐾 ∈ (ℤ‘2))
9 eluz2nn 11555 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℕ)
108, 9syl 17 . . . . . . . 8 (𝜑𝐾 ∈ ℕ)
1110adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐾 ∈ ℕ)
12 vdwlem3.w . . . . . . . 8 (𝜑𝑊 ∈ ℕ)
1312adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑊 ∈ ℕ)
14 vdwlem7.g . . . . . . . 8 (𝜑𝐺:(1...𝑊)⟶𝑅)
1514adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐺:(1...𝑊)⟶𝑅)
16 vdwlem6.b . . . . . . . 8 (𝜑𝐵 ∈ ℕ)
1716adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐵 ∈ ℕ)
18 vdwlem7.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
1918adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑀 ∈ ℕ)
20 vdwlem6.e . . . . . . . 8 (𝜑𝐸:(1...𝑀)⟶ℕ)
2120adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝐸:(1...𝑀)⟶ℕ)
22 vdwlem6.s . . . . . . . 8 (𝜑 → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
2322adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → ∀𝑖 ∈ (1...𝑀)((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
24 simprl 789 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → 𝑚 ∈ (1...𝑀))
25 simprr 791 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺𝐵))
26 fveq2 6085 . . . . . . . . . . . 12 (𝑖 = 𝑚 → (𝐸𝑖) = (𝐸𝑚))
2726oveq2d 6540 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝐵 + (𝐸𝑖)) = (𝐵 + (𝐸𝑚)))
2827fveq2d 6089 . . . . . . . . . 10 (𝑖 = 𝑚 → (𝐺‘(𝐵 + (𝐸𝑖))) = (𝐺‘(𝐵 + (𝐸𝑚))))
29 fvex 6095 . . . . . . . . . 10 (𝐺‘(𝐵 + (𝐸𝑚))) ∈ V
3028, 2, 29fvmpt 6173 . . . . . . . . 9 (𝑚 ∈ (1...𝑀) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3124, 30syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐽𝑚) = (𝐺‘(𝐵 + (𝐸𝑚))))
3225, 31eqtr3d 2642 . . . . . . 7 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐺𝐵) = (𝐺‘(𝐵 + (𝐸𝑚))))
337, 11, 13, 15, 17, 19, 21, 23, 24, 32vdwlem1 15466 . . . . . 6 ((𝜑 ∧ (𝑚 ∈ (1...𝑀) ∧ (𝐽𝑚) = (𝐺𝐵))) → (𝐾 + 1) MonoAP 𝐺)
3433rexlimdvaa 3010 . . . . 5 (𝜑 → (∃𝑚 ∈ (1...𝑀)(𝐽𝑚) = (𝐺𝐵) → (𝐾 + 1) MonoAP 𝐺))
355, 34syl5bi 230 . . . 4 (𝜑 → ((𝐺𝐵) ∈ ran 𝐽 → (𝐾 + 1) MonoAP 𝐺))
3635imp 443 . . 3 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (𝐾 + 1) MonoAP 𝐺)
3736olcd 406 . 2 ((𝜑 ∧ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
38 vdwlem3.v . . . . . . 7 (𝜑𝑉 ∈ ℕ)
39 vdwlem4.h . . . . . . 7 (𝜑𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
40 vdwlem4.f . . . . . . 7 𝐹 = (𝑥 ∈ (1...𝑉) ↦ (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))))
41 vdwlem7.a . . . . . . 7 (𝜑𝐴 ∈ ℕ)
42 vdwlem7.d . . . . . . 7 (𝜑𝐷 ∈ ℕ)
43 vdwlem7.s . . . . . . 7 (𝜑 → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
44 vdwlem6.r . . . . . . 7 (𝜑 → (#‘ran 𝐽) = 𝑀)
45 vdwlem6.t . . . . . . 7 𝑇 = (𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)))
46 vdwlem6.p . . . . . . 7 𝑃 = (𝑗 ∈ (1...(𝑀 + 1)) ↦ (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)))
4738, 12, 6, 39, 40, 18, 14, 8, 41, 42, 43, 16, 20, 22, 2, 44, 45, 46vdwlem5 15470 . . . . . 6 (𝜑𝑇 ∈ ℕ)
4847adantr 479 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑇 ∈ ℕ)
49 0nn0 11151 . . . . . . . . . 10 0 ∈ ℕ0
5049a1i 11 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 = (𝑀 + 1)) → 0 ∈ ℕ0)
51 nnuz 11552 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
5218, 51syl6eleq 2694 . . . . . . . . . . . . . . . 16 (𝜑𝑀 ∈ (ℤ‘1))
5352adantr 479 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ (ℤ‘1))
54 elfzp1 12213 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘1) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5553, 54syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑗 ∈ (1...(𝑀 + 1)) ↔ (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1))))
5655biimpa 499 . . . . . . . . . . . . 13 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑗 ∈ (1...𝑀) ∨ 𝑗 = (𝑀 + 1)))
5756ord 390 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 ∈ (1...𝑀) → 𝑗 = (𝑀 + 1)))
5857con1d 137 . . . . . . . . . . 11 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (¬ 𝑗 = (𝑀 + 1) → 𝑗 ∈ (1...𝑀)))
5958imp 443 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → 𝑗 ∈ (1...𝑀))
6020ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → 𝐸:(1...𝑀)⟶ℕ)
6160ffvelrnda 6249 . . . . . . . . . . 11 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ)
6261nnnn0d 11195 . . . . . . . . . 10 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ 𝑗 ∈ (1...𝑀)) → (𝐸𝑗) ∈ ℕ0)
6359, 62syldan 485 . . . . . . . . 9 ((((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) ∧ ¬ 𝑗 = (𝑀 + 1)) → (𝐸𝑗) ∈ ℕ0)
6450, 63ifclda 4066 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0)
6512, 42nnmulcld 10912 . . . . . . . . 9 (𝜑 → (𝑊 · 𝐷) ∈ ℕ)
6665ad2antrr 757 . . . . . . . 8 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (𝑊 · 𝐷) ∈ ℕ)
67 nn0nnaddcl 11168 . . . . . . . 8 ((if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) ∈ ℕ0 ∧ (𝑊 · 𝐷) ∈ ℕ) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6864, 66, 67syl2anc 690 . . . . . . 7 (((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) ∧ 𝑗 ∈ (1...(𝑀 + 1))) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) ∈ ℕ)
6968, 46fmptd 6274 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃:(1...(𝑀 + 1))⟶ℕ)
70 nnex 10870 . . . . . . 7 ℕ ∈ V
71 ovex 6552 . . . . . . 7 (1...(𝑀 + 1)) ∈ V
7270, 71elmap 7746 . . . . . 6 (𝑃 ∈ (ℕ ↑𝑚 (1...(𝑀 + 1))) ↔ 𝑃:(1...(𝑀 + 1))⟶ℕ)
7369, 72sylibr 222 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑃 ∈ (ℕ ↑𝑚 (1...(𝑀 + 1))))
74 elfzp1 12213 . . . . . . . . . 10 (𝑀 ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7552, 74syl 17 . . . . . . . . 9 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) ↔ (𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1))))
7616adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℕ)
7776nncnd 10880 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ ℂ)
7877adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
7920ffvelrnda 6249 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ)
8079nncnd 10880 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℂ)
8180adantr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐸𝑖) ∈ ℂ)
8278, 81addcld 9912 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝐸𝑖)) ∈ ℂ)
83 nnm1nn0 11178 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
8441, 83syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐴 − 1) ∈ ℕ0)
85 nn0nnaddcl 11168 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 − 1) ∈ ℕ0𝑉 ∈ ℕ) → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8684, 38, 85syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℕ)
8712, 86nnmulcld 10912 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
8887nncnd 10880 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
8988ad2antrr 757 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
90 elfznn0 12254 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
9190adantl 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
9291nn0cnd 11197 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9392adantlr 746 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
9493, 81mulcld 9913 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝐸𝑖)) ∈ ℂ)
9565nnnn0d 11195 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑊 · 𝐷) ∈ ℕ0)
9695adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℕ0)
9791, 96nn0mulcld 11200 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℕ0)
9897nn0cnd 11197 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
9998adantlr 746 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) ∈ ℂ)
10082, 89, 94, 99add4d 10112 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
10165nncnd 10880 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑊 · 𝐷) ∈ ℂ)
102101ad2antrr 757 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · 𝐷) ∈ ℂ)
10393, 81, 102adddid 9917 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷))))
104103oveq2d 6540 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + ((𝑚 · (𝐸𝑖)) + (𝑚 · (𝑊 · 𝐷)))))
10512nncnd 10880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑊 ∈ ℂ)
106105adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℂ)
10786nncnd 10880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 − 1) + 𝑉) ∈ ℂ)
108107adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 − 1) + 𝑉) ∈ ℂ)
10942nncnd 10880 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐷 ∈ ℂ)
110109adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐷 ∈ ℂ)
11192, 110mulcld 9913 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝐷) ∈ ℂ)
112106, 108, 111adddid 9917 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
11341nncnd 10880 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐴 ∈ ℂ)
114113adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐴 ∈ ℂ)
115 1cnd 9909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 1 ∈ ℂ)
116114, 111, 115addsubd 10261 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) − 1) = ((𝐴 − 1) + (𝑚 · 𝐷)))
117116oveq1d 6539 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉))
11884nn0cnd 11197 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴 − 1) ∈ ℂ)
119118adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 − 1) ∈ ℂ)
12038nncnd 10880 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑉 ∈ ℂ)
121120adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℂ)
122119, 111, 121add32d 10111 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 − 1) + (𝑚 · 𝐷)) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
123117, 122eqtrd 2640 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉) = (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷)))
124123oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = (𝑊 · (((𝐴 − 1) + 𝑉) + (𝑚 · 𝐷))))
12592, 106, 110mul12d 10093 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · (𝑊 · 𝐷)) = (𝑊 · (𝑚 · 𝐷)))
126125oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑊 · (𝑚 · 𝐷))))
127112, 124, 1263eqtr4d 2650 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
128127adantlr 746 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)) = ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷))))
129128oveq2d 6540 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
130100, 104, 1293eqtr4d 2650 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
13138ad2antrr 757 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
13212ad2antrr 757 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
13343adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴(AP‘𝐾)𝐷) ⊆ (𝐹 “ {𝐺}))
134 eqid 2606 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))
135 oveq1 6531 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑚 → (𝑛 · 𝐷) = (𝑚 · 𝐷))
136135oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑚 → (𝐴 + (𝑛 · 𝐷)) = (𝐴 + (𝑚 · 𝐷)))
137136eqeq2d 2616 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → ((𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)) ↔ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))))
138137rspcev 3278 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑚 · 𝐷))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
139134, 138mpan2 702 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷)))
14010nnnn0d 11195 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐾 ∈ ℕ0)
141 vdwapval 15458 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐾 ∈ ℕ0𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
142140, 41, 42, 141syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))))
143142biimpar 500 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ∃𝑛 ∈ (0...(𝐾 − 1))(𝐴 + (𝑚 · 𝐷)) = (𝐴 + (𝑛 · 𝐷))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
144139, 143sylan2 489 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐴(AP‘𝐾)𝐷))
145133, 144sseldd 3565 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}))
14638, 12, 6, 39, 40vdwlem4 15469 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)))
147 ffn 5941 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹:(1...𝑉)⟶(𝑅𝑚 (1...𝑊)) → 𝐹 Fn (1...𝑉))
148146, 147syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐹 Fn (1...𝑉))
149 fniniseg 6228 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹 Fn (1...𝑉) → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
150148, 149syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺}) ↔ ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)))
151150biimpa 499 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝐴 + (𝑚 · 𝐷)) ∈ (𝐹 “ {𝐺})) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
152145, 151syldan 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) ∧ (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺))
153152simpld 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
154153adantlr 746 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉))
15522r19.21bi 2912 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
156155adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ⊆ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
157 eqid 2606 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))
158 oveq1 6531 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑚 → (𝑛 · (𝐸𝑖)) = (𝑚 · (𝐸𝑖)))
159158oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑚 → ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))))
160159eqeq2d 2616 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑚 → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))) ↔ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
161160rspcev 3278 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
162157, 161mpan2 702 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖))))
16310adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ)
164163nnnn0d 11195 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐾 ∈ ℕ0)
16576, 79nnaddcld 10911 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ℕ)
166 vdwapval 15458 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
167164, 165, 79, 166syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))))
168167biimpar 500 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ∃𝑛 ∈ (0...(𝐾 − 1))((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) = ((𝐵 + (𝐸𝑖)) + (𝑛 · (𝐸𝑖)))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
169162, 168sylan2 489 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
170156, 169sseldd 3565 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
171 ffn 5941 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐺:(1...𝑊)⟶𝑅𝐺 Fn (1...𝑊))
17214, 171syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐺 Fn (1...𝑊))
173172adantr 479 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐺 Fn (1...𝑊))
174 fniniseg 6228 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn (1...𝑊) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
175173, 174syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
176175biimpa 499 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (1...𝑀)) ∧ ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
177170, 176syldan 485 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) ∧ (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
178177simpld 473 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊))
179131, 132, 154, 178vdwlem3 15468 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
180130, 179eqeltrd 2684 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))))
181 oveq1 6531 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) → (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
182181fveq2d 6089 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
183 eqid 2606 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
184 fvex 6095 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
185182, 183, 184fvmpt 6173 . . . . . . . . . . . . . . . . . . 19 (((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
186178, 185syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
187177simprd 477 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = (𝐺‘(𝐵 + (𝐸𝑖))))
188152simprd 477 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = 𝐺)
189 oveq1 6531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑥 − 1) = ((𝐴 + (𝑚 · 𝐷)) − 1))
190189oveq1d 6539 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → ((𝑥 − 1) + 𝑉) = (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))
191190oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))
192191oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
193192fveq2d 6089 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
194193mpteq2dv 4664 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝐴 + (𝑚 · 𝐷)) → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
195 ovex 6552 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1...𝑊) ∈ V
196195mptex 6365 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))) ∈ V
197194, 40, 196fvmpt 6173 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 + (𝑚 · 𝐷)) ∈ (1...𝑉) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
198153, 197syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘(𝐴 + (𝑚 · 𝐷))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
199188, 198eqtr3d 2642 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
200199adantlr 746 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))))
201200fveq1d 6087 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
202187, 201eqtr3d 2642 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖)))))
203130fveq2d 6089 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑚 · (𝐸𝑖))) + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
204186, 202, 2033eqtr4rd 2651 . . . . . . . . . . . . . . . . 17 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))
205180, 204jca 552 . . . . . . . . . . . . . . . 16 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
206 eleq1 2672 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉)))))
207 fveq2 6085 . . . . . . . . . . . . . . . . . 18 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝐻𝑥) = (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
208207eqeq1d 2608 . . . . . . . . . . . . . . . . 17 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))) ↔ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖)))))
209206, 208anbi12d 742 . . . . . . . . . . . . . . . 16 (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → ((𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖)))) ↔ ((((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘(((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))) = (𝐺‘(𝐵 + (𝐸𝑖))))))
210205, 209syl5ibrcom 235 . . . . . . . . . . . . . . 15 (((𝜑𝑖 ∈ (1...𝑀)) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
211210rexlimdva 3009 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷)))) → (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
21287adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℕ)
213165, 212nnaddcld 10911 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
21465adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℕ)
21579, 214nnaddcld 10911 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ)
216 vdwapval 15458 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ ((𝐸𝑖) + (𝑊 · 𝐷)) ∈ ℕ) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
217164, 213, 215, 216syl3anc 1317 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · ((𝐸𝑖) + (𝑊 · 𝐷))))))
218 ffn 5941 . . . . . . . . . . . . . . . . 17 (𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
21939, 218syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
220219adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐻 Fn (1...(𝑊 · (2 · 𝑉))))
221 fniniseg 6228 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
222220, 221syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ↔ (𝑥 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑥) = (𝐺‘(𝐵 + (𝐸𝑖))))))
223211, 217, 2223imtr4d 281 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 ∈ (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) → 𝑥 ∈ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))})))
224223ssrdv 3570 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))) ⊆ (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
225 ssun1 3734 . . . . . . . . . . . . . . . . . . 19 (1...𝑀) ⊆ ((1...𝑀) ∪ {(𝑀 + 1)})
226 fzsuc 12210 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (ℤ‘1) → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
22752, 226syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (1...(𝑀 + 1)) = ((1...𝑀) ∪ {(𝑀 + 1)}))
228225, 227syl5sseqr 3613 . . . . . . . . . . . . . . . . . 18 (𝜑 → (1...𝑀) ⊆ (1...(𝑀 + 1)))
229228sselda 3564 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...(𝑀 + 1)))
230 eqeq1 2610 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝑗 = (𝑀 + 1) ↔ 𝑖 = (𝑀 + 1)))
231 fveq2 6085 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑖 → (𝐸𝑗) = (𝐸𝑖))
232230, 231ifbieq2d 4057 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑖 → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)))
233232oveq1d 6539 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑖 → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
234 ovex 6552 . . . . . . . . . . . . . . . . . 18 (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) ∈ V
235233, 46, 234fvmpt 6173 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 1)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
236229, 235syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)))
237 elfzle2 12168 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (1...𝑀) → 𝑖𝑀)
23818nnred 10879 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
239238ltp1d 10800 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 < (𝑀 + 1))
240 peano2re 10057 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℝ → (𝑀 + 1) ∈ ℝ)
241238, 240syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑀 + 1) ∈ ℝ)
242238, 241ltnled 10032 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑀 < (𝑀 + 1) ↔ ¬ (𝑀 + 1) ≤ 𝑀))
243239, 242mpbid 220 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ¬ (𝑀 + 1) ≤ 𝑀)
244 breq1 4577 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = (𝑀 + 1) → (𝑖𝑀 ↔ (𝑀 + 1) ≤ 𝑀))
245244notbid 306 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = (𝑀 + 1) → (¬ 𝑖𝑀 ↔ ¬ (𝑀 + 1) ≤ 𝑀))
246243, 245syl5ibrcom 235 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑖 = (𝑀 + 1) → ¬ 𝑖𝑀))
247246con2d 127 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑖𝑀 → ¬ 𝑖 = (𝑀 + 1)))
248237, 247syl5 33 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑖 ∈ (1...𝑀) → ¬ 𝑖 = (𝑀 + 1)))
249248imp 443 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → ¬ 𝑖 = (𝑀 + 1))
250 iffalse 4041 . . . . . . . . . . . . . . . . . 18 𝑖 = (𝑀 + 1) → if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) = (𝐸𝑖))
251250oveq1d 6539 . . . . . . . . . . . . . . . . 17 𝑖 = (𝑀 + 1) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
252249, 251syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (if(𝑖 = (𝑀 + 1), 0, (𝐸𝑖)) + (𝑊 · 𝐷)) = ((𝐸𝑖) + (𝑊 · 𝐷)))
253236, 252eqtrd 2640 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) = ((𝐸𝑖) + (𝑊 · 𝐷)))
254253oveq2d 6540 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))))
25547nncnd 10880 . . . . . . . . . . . . . . . 16 (𝜑𝑇 ∈ ℂ)
256255adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑇 ∈ ℂ)
257101adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · 𝐷) ∈ ℂ)
258256, 80, 257add12d 10110 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + ((𝐸𝑖) + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))))
25945oveq1i 6534 . . . . . . . . . . . . . . . . . 18 (𝑇 + (𝑊 · 𝐷)) = ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷))
26016nncnd 10880 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ ℂ)
261120, 109subcld 10240 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑉𝐷) ∈ ℂ)
262113, 261addcld 9912 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴 + (𝑉𝐷)) ∈ ℂ)
263 ax-1cn 9847 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
264 subcl 10128 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 + (𝑉𝐷)) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
265262, 263, 264sylancl 692 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ((𝐴 + (𝑉𝐷)) − 1) ∈ ℂ)
266105, 265mulcld 9913 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) ∈ ℂ)
267260, 266, 101addassd 9915 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))))
268105, 265, 109adddid 9917 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)))
269113, 261, 109addassd 9915 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + ((𝑉𝐷) + 𝐷)))
270120, 109npcand 10244 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → ((𝑉𝐷) + 𝐷) = 𝑉)
271270oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴 + ((𝑉𝐷) + 𝐷)) = (𝐴 + 𝑉))
272269, 271eqtrd 2640 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((𝐴 + (𝑉𝐷)) + 𝐷) = (𝐴 + 𝑉))
273272oveq1d 6539 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = ((𝐴 + 𝑉) − 1))
274 1cnd 9909 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ ℂ)
275262, 109, 274addsubd 10261 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝐴 + (𝑉𝐷)) + 𝐷) − 1) = (((𝐴 + (𝑉𝐷)) − 1) + 𝐷))
276113, 120, 274addsubd 10261 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ((𝐴 + 𝑉) − 1) = ((𝐴 − 1) + 𝑉))
277273, 275, 2763eqtr3d 2648 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (((𝐴 + (𝑉𝐷)) − 1) + 𝐷) = ((𝐴 − 1) + 𝑉))
278277oveq2d 6540 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑊 · (((𝐴 + (𝑉𝐷)) − 1) + 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
279268, 278eqtr3d 2642 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
280279oveq2d 6540 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐵 + ((𝑊 · ((𝐴 + (𝑉𝐷)) − 1)) + (𝑊 · 𝐷))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
281267, 280eqtrd 2640 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 + (𝑉𝐷)) − 1))) + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
282259, 281syl5eq 2652 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑇 + (𝑊 · 𝐷)) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
283282oveq2d 6540 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
284283adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
28588adantr 479 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
28680, 77, 285addassd 9915 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐸𝑖) + (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
28780, 77addcomd 10086 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + 𝐵) = (𝐵 + (𝐸𝑖)))
288287oveq1d 6539 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (((𝐸𝑖) + 𝐵) + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
289284, 286, 2883eqtr2d 2646 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝐸𝑖) + (𝑇 + (𝑊 · 𝐷))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
290254, 258, 2893eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑇 + (𝑃𝑖)) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
291290, 253oveq12d 6542 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = (((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)((𝐸𝑖) + (𝑊 · 𝐷))))
292 cnvimass 5388 . . . . . . . . . . . . . . . . . . 19 (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ dom 𝐺
293 fdm 5947 . . . . . . . . . . . . . . . . . . . 20 (𝐺:(1...𝑊)⟶𝑅 → dom 𝐺 = (1...𝑊))
29414, 293syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑 → dom 𝐺 = (1...𝑊))
295292, 294syl5sseq 3612 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
296295adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}) ⊆ (1...𝑊))
297 vdwapid1 15460 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ ∧ (𝐵 + (𝐸𝑖)) ∈ ℕ ∧ (𝐸𝑖) ∈ ℕ) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
298163, 165, 79, 297syl3anc 1317 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ ((𝐵 + (𝐸𝑖))(AP‘𝐾)(𝐸𝑖)))
299155, 298sseldd 3565 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (𝐺 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
300296, 299sseldd 3565 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (1...𝑊))
301 oveq1 6531 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝐵 + (𝐸𝑖)) → (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))) = ((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉))))
302301fveq2d 6089 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝐵 + (𝐸𝑖)) → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
303 eqid 2606 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
304 fvex 6095 . . . . . . . . . . . . . . . . 17 (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
305302, 303, 304fvmpt 6173 . . . . . . . . . . . . . . . 16 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
306300, 305syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
307 vdwapid1 15460 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → 𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
30810, 41, 42, 307syl3anc 1317 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐴 ∈ (𝐴(AP‘𝐾)𝐷))
30943, 308sseldd 3565 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ (𝐹 “ {𝐺}))
310 fniniseg 6228 . . . . . . . . . . . . . . . . . . . . 21 (𝐹 Fn (1...𝑉) → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
311148, 310syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴 ∈ (𝐹 “ {𝐺}) ↔ (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺)))
312309, 311mpbid 220 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝐴 ∈ (1...𝑉) ∧ (𝐹𝐴) = 𝐺))
313312simprd 477 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = 𝐺)
314312simpld 473 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 ∈ (1...𝑉))
315 oveq1 6531 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 𝐴 → (𝑥 − 1) = (𝐴 − 1))
316315oveq1d 6539 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 𝐴 → ((𝑥 − 1) + 𝑉) = ((𝐴 − 1) + 𝑉))
317316oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝐴 → (𝑊 · ((𝑥 − 1) + 𝑉)) = (𝑊 · ((𝐴 − 1) + 𝑉)))
318317oveq2d 6540 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝐴 → (𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))) = (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))
319318fveq2d 6089 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉)))) = (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
320319mpteq2dv 4664 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝐴 → (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝑥 − 1) + 𝑉))))) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
321195mptex 6365 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))) ∈ V
322320, 40, 321fvmpt 6173 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ (1...𝑉) → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
323314, 322syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝐹𝐴) = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
324313, 323eqtr3d 2642 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 = (𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))))))
325324fveq1d 6087 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
326325adantr 479 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐺‘(𝐵 + (𝐸𝑖))) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘(𝐵 + (𝐸𝑖))))
327290fveq2d 6089 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘((𝐵 + (𝐸𝑖)) + (𝑊 · ((𝐴 − 1) + 𝑉)))))
328306, 326, 3273eqtr4rd 2651 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐺‘(𝐵 + (𝐸𝑖))))
329328sneqd 4133 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (1...𝑀)) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐺‘(𝐵 + (𝐸𝑖)))})
330329imaeq2d 5369 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐺‘(𝐵 + (𝐸𝑖)))}))
331224, 291, 3303sstr4d 3607 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
332331ex 448 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (1...𝑀) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
333260adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ ℂ)
33488adantr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑊 · ((𝐴 − 1) + 𝑉)) ∈ ℂ)
335333, 334, 98addassd 9915 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
336127oveq2d 6540 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (𝐵 + ((𝑊 · ((𝐴 − 1) + 𝑉)) + (𝑚 · (𝑊 · 𝐷)))))
337335, 336eqtr4d 2643 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) = (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
33838adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑉 ∈ ℕ)
33912adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝑊 ∈ ℕ)
340 eluzfz1 12171 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ (ℤ‘1) → 1 ∈ (1...𝑀))
34152, 340syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → 1 ∈ (1...𝑀))
342 ne0i 3876 . . . . . . . . . . . . . . . . . . . . . . . 24 (1 ∈ (1...𝑀) → (1...𝑀) ≠ ∅)
343341, 342syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (1...𝑀) ≠ ∅)
344 elfzuz3 12162 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 + (𝐸𝑖)) ∈ (1...𝑊) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
345300, 344syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))))
34616nnzd 11310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝐵 ∈ ℤ)
347 uzid 11531 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ ℤ → 𝐵 ∈ (ℤ𝐵))
348346, 347syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ (ℤ𝐵))
349348adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵 ∈ (ℤ𝐵))
35079nnnn0d 11195 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐸𝑖) ∈ ℕ0)
351 uzaddcl 11573 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ (ℤ𝐵) ∧ (𝐸𝑖) ∈ ℕ0) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
352349, 350, 351syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵))
353 uztrn 11533 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑊 ∈ (ℤ‘(𝐵 + (𝐸𝑖))) ∧ (𝐵 + (𝐸𝑖)) ∈ (ℤ𝐵)) → 𝑊 ∈ (ℤ𝐵))
354345, 352, 353syl2anc 690 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑊 ∈ (ℤ𝐵))
355 eluzle 11529 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑊 ∈ (ℤ𝐵) → 𝐵𝑊)
356354, 355syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑖 ∈ (1...𝑀)) → 𝐵𝑊)
357356ralrimiva 2945 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑖 ∈ (1...𝑀)𝐵𝑊)
358 r19.2z 4008 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑀) ≠ ∅ ∧ ∀𝑖 ∈ (1...𝑀)𝐵𝑊) → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
359343, 357, 358syl2anc 690 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∃𝑖 ∈ (1...𝑀)𝐵𝑊)
360 idd 24 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 ∈ (1...𝑀) → (𝐵𝑊𝐵𝑊))
361360rexlimiv 3005 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑖 ∈ (1...𝑀)𝐵𝑊𝐵𝑊)
362359, 361syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝑊)
36312nnzd 11310 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑊 ∈ ℤ)
364 fznn 12230 . . . . . . . . . . . . . . . . . . . . . 22 (𝑊 ∈ ℤ → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
365363, 364syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐵 ∈ (1...𝑊) ↔ (𝐵 ∈ ℕ ∧ 𝐵𝑊)))
36616, 362, 365mpbir2and 958 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐵 ∈ (1...𝑊))
367366adantr 479 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → 𝐵 ∈ (1...𝑊))
368338, 339, 153, 367vdwlem3 15468 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) ∈ (1...(𝑊 · (2 · 𝑉))))
369337, 368eqeltrd 2684 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))))
370 oveq1 6531 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝐵 → (𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))) = (𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉))))
371370fveq2d 6089 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
372 fvex 6095 . . . . . . . . . . . . . . . . . . . 20 (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))) ∈ V
373371, 183, 372fvmpt 6173 . . . . . . . . . . . . . . . . . . 19 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
374367, 373syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
375199fveq1d 6087 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))‘𝐵))
376337fveq2d 6089 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐻‘(𝐵 + (𝑊 · (((𝐴 + (𝑚 · 𝐷)) − 1) + 𝑉)))))
377374, 375, 3763eqtr4rd 2651 . . . . . . . . . . . . . . . . 17 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))
378369, 377jca 552 . . . . . . . . . . . . . . . 16 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
379 eleq1 2672 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ↔ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉)))))
380 fveq2 6085 . . . . . . . . . . . . . . . . . 18 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝐻𝑧) = (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
381380eqeq1d 2608 . . . . . . . . . . . . . . . . 17 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝐻𝑧) = (𝐺𝐵) ↔ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵)))
382379, 381anbi12d 742 . . . . . . . . . . . . . . . 16 (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → ((𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵)) ↔ (((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻‘((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))) = (𝐺𝐵))))
383378, 382syl5ibrcom 235 . . . . . . . . . . . . . . 15 ((𝜑𝑚 ∈ (0...(𝐾 − 1))) → (𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
384383rexlimdva 3009 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷))) → (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
38516, 87nnaddcld 10911 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ)
386 vdwapval 15458 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℕ0 ∧ (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) ∈ ℕ ∧ (𝑊 · 𝐷) ∈ ℕ) → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
387140, 385, 65, 386syl3anc 1317 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑧 = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))) + (𝑚 · (𝑊 · 𝐷)))))
388 fniniseg 6228 . . . . . . . . . . . . . . 15 (𝐻 Fn (1...(𝑊 · (2 · 𝑉))) → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
389219, 388syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ (𝐻 “ {(𝐺𝐵)}) ↔ (𝑧 ∈ (1...(𝑊 · (2 · 𝑉))) ∧ (𝐻𝑧) = (𝐺𝐵))))
390384, 387, 3893imtr4d 281 . . . . . . . . . . . . 13 (𝜑 → (𝑧 ∈ ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) → 𝑧 ∈ (𝐻 “ {(𝐺𝐵)})))
391390ssrdv 3570 . . . . . . . . . . . 12 (𝜑 → ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)) ⊆ (𝐻 “ {(𝐺𝐵)}))
39218peano2nnd 10881 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑀 + 1) ∈ ℕ)
393392, 51syl6eleq 2694 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑀 + 1) ∈ (ℤ‘1))
394 eluzfz2 12172 . . . . . . . . . . . . . . . . . 18 ((𝑀 + 1) ∈ (ℤ‘1) → (𝑀 + 1) ∈ (1...(𝑀 + 1)))
395393, 394syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑀 + 1) ∈ (1...(𝑀 + 1)))
396 iftrue 4038 . . . . . . . . . . . . . . . . . . 19 (𝑗 = (𝑀 + 1) → if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) = 0)
397396oveq1d 6539 . . . . . . . . . . . . . . . . . 18 (𝑗 = (𝑀 + 1) → (if(𝑗 = (𝑀 + 1), 0, (𝐸𝑗)) + (𝑊 · 𝐷)) = (0 + (𝑊 · 𝐷)))
398 ovex 6552 . . . . . . . . . . . . . . . . . 18 (0 + (𝑊 · 𝐷)) ∈ V
399397, 46, 398fvmpt 6173 . . . . . . . . . . . . . . . . 17 ((𝑀 + 1) ∈ (1...(𝑀 + 1)) → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
400395, 399syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑃‘(𝑀 + 1)) = (0 + (𝑊 · 𝐷)))
401101addid2d 10085 . . . . . . . . . . . . . . . 16 (𝜑 → (0 + (𝑊 · 𝐷)) = (𝑊 · 𝐷))
402400, 401eqtrd 2640 . . . . . . . . . . . . . . 15 (𝜑 → (𝑃‘(𝑀 + 1)) = (𝑊 · 𝐷))
403402oveq2d 6540 . . . . . . . . . . . . . 14 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝑇 + (𝑊 · 𝐷)))
404403, 282eqtrd 2640 . . . . . . . . . . . . 13 (𝜑 → (𝑇 + (𝑃‘(𝑀 + 1))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
405404, 402oveq12d 6542 . . . . . . . . . . . 12 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) = ((𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))(AP‘𝐾)(𝑊 · 𝐷)))
406 oveq1 6531 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝐵 → (𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉))) = (𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉))))
407406fveq2d 6089 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝐵 → (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
408 fvex 6095 . . . . . . . . . . . . . . . . 17 (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))) ∈ V
409407, 303, 408fvmpt 6173 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (1...𝑊) → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
410366, 409syl 17 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
411324fveq1d 6087 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺𝐵) = ((𝑦 ∈ (1...𝑊) ↦ (𝐻‘(𝑦 + (𝑊 · ((𝐴 − 1) + 𝑉)))))‘𝐵))
412404fveq2d 6089 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐻‘(𝐵 + (𝑊 · ((𝐴 − 1) + 𝑉)))))
413410, 411, 4123eqtr4rd 2651 . . . . . . . . . . . . . 14 (𝜑 → (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) = (𝐺𝐵))
414413sneqd 4133 . . . . . . . . . . . . 13 (𝜑 → {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))} = {(𝐺𝐵)})
415414imaeq2d 5369 . . . . . . . . . . . 12 (𝜑 → (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}) = (𝐻 “ {(𝐺𝐵)}))
416391, 405, 4153sstr4d 3607 . . . . . . . . . . 11 (𝜑 → ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
417 fveq2 6085 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝑃𝑖) = (𝑃‘(𝑀 + 1)))
418417oveq2d 6540 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → (𝑇 + (𝑃𝑖)) = (𝑇 + (𝑃‘(𝑀 + 1))))
419418, 417oveq12d 6542 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) = ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))))
420418fveq2d 6089 . . . . . . . . . . . . . 14 (𝑖 = (𝑀 + 1) → (𝐻‘(𝑇 + (𝑃𝑖))) = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
421420sneqd 4133 . . . . . . . . . . . . 13 (𝑖 = (𝑀 + 1) → {(𝐻‘(𝑇 + (𝑃𝑖)))} = {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})
422421imaeq2d 5369 . . . . . . . . . . . 12 (𝑖 = (𝑀 + 1) → (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))}))
423419, 422sseq12d 3593 . . . . . . . . . . 11 (𝑖 = (𝑀 + 1) → (((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ↔ ((𝑇 + (𝑃‘(𝑀 + 1)))(AP‘𝐾)(𝑃‘(𝑀 + 1))) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))})))
424416, 423syl5ibrcom 235 . . . . . . . . . 10 (𝜑 → (𝑖 = (𝑀 + 1) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
425332, 424jaod 393 . . . . . . . . 9 (𝜑 → ((𝑖 ∈ (1...𝑀) ∨ 𝑖 = (𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
42675, 425sylbid 228 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...(𝑀 + 1)) → ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
427426ralrimiv 2944 . . . . . . 7 (𝜑 → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
428427adantr 479 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
429227rexeqdv 3118 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
430 rexun 3751 . . . . . . . . . . . . 13 (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))))
431328eqeq2d 2616 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
432431rexbidva 3027 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))))
433 ovex 6552 . . . . . . . . . . . . . . . 16 (𝑀 + 1) ∈ V
434420eqeq2d 2616 . . . . . . . . . . . . . . . 16 (𝑖 = (𝑀 + 1) → (𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1))))))
435433, 434rexsn 4166 . . . . . . . . . . . . . . 15 (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))))
436413eqeq2d 2616 . . . . . . . . . . . . . . 15 (𝜑 → (𝑥 = (𝐻‘(𝑇 + (𝑃‘(𝑀 + 1)))) ↔ 𝑥 = (𝐺𝐵)))
437435, 436syl5bb 270 . . . . . . . . . . . . . 14 (𝜑 → (∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ 𝑥 = (𝐺𝐵)))
438432, 437orbi12d 741 . . . . . . . . . . . . 13 (𝜑 → ((∃𝑖 ∈ (1...𝑀)𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ∨ ∃𝑖 ∈ {(𝑀 + 1)}𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
439430, 438syl5bb 270 . . . . . . . . . . . 12 (𝜑 → (∃𝑖 ∈ ((1...𝑀) ∪ {(𝑀 + 1)})𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
440429, 439bitrd 266 . . . . . . . . . . 11 (𝜑 → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
441440adantr 479 . . . . . . . . . 10 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖))) ↔ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))))
442441abbidv 2724 . . . . . . . . 9 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))} = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))})
443 eqid 2606 . . . . . . . . . 10 (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))
444443rnmpt 5276 . . . . . . . . 9 ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = {𝑥 ∣ ∃𝑖 ∈ (1...(𝑀 + 1))𝑥 = (𝐻‘(𝑇 + (𝑃𝑖)))}
4452rnmpt 5276 . . . . . . . . . . 11 ran 𝐽 = {𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))}
446 df-sn 4122 . . . . . . . . . . 11 {(𝐺𝐵)} = {𝑥𝑥 = (𝐺𝐵)}
447445, 446uneq12i 3723 . . . . . . . . . 10 (ran 𝐽 ∪ {(𝐺𝐵)}) = ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)})
448 unab 3849 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖)))} ∪ {𝑥𝑥 = (𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
449447, 448eqtri 2628 . . . . . . . . 9 (ran 𝐽 ∪ {(𝐺𝐵)}) = {𝑥 ∣ (∃𝑖 ∈ (1...𝑀)𝑥 = (𝐺‘(𝐵 + (𝐸𝑖))) ∨ 𝑥 = (𝐺𝐵))}
450442, 444, 4493eqtr4g 2665 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))) = (ran 𝐽 ∪ {(𝐺𝐵)}))
451450fveq2d 6089 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (#‘(ran 𝐽 ∪ {(𝐺𝐵)})))
452 fzfi 12585 . . . . . . . . . 10 (1...𝑀) ∈ Fin
453 dffn4 6016 . . . . . . . . . . 11 (𝐽 Fn (1...𝑀) ↔ 𝐽:(1...𝑀)–onto→ran 𝐽)
4543, 453mpbi 218 . . . . . . . . . 10 𝐽:(1...𝑀)–onto→ran 𝐽
455 fofi 8109 . . . . . . . . . 10 (((1...𝑀) ∈ Fin ∧ 𝐽:(1...𝑀)–onto→ran 𝐽) → ran 𝐽 ∈ Fin)
456452, 454, 455mp2an 703 . . . . . . . . 9 ran 𝐽 ∈ Fin
457456a1i 11 . . . . . . . 8 (𝜑 → ran 𝐽 ∈ Fin)
458 fvex 6095 . . . . . . . . 9 (𝐺𝐵) ∈ V
459 hashunsng 12991 . . . . . . . . 9 ((𝐺𝐵) ∈ V → ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (#‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((#‘ran 𝐽) + 1)))
460458, 459ax-mp 5 . . . . . . . 8 ((ran 𝐽 ∈ Fin ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (#‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((#‘ran 𝐽) + 1))
461457, 460sylan 486 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (#‘(ran 𝐽 ∪ {(𝐺𝐵)})) = ((#‘ran 𝐽) + 1))
46244adantr 479 . . . . . . . 8 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (#‘ran 𝐽) = 𝑀)
463462oveq1d 6539 . . . . . . 7 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ((#‘ran 𝐽) + 1) = (𝑀 + 1))
464451, 461, 4633eqtrd 2644 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))
465428, 464jca 552 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
466 oveq1 6531 . . . . . . . . . 10 (𝑎 = 𝑇 → (𝑎 + (𝑑𝑖)) = (𝑇 + (𝑑𝑖)))
467466oveq1d 6539 . . . . . . . . 9 (𝑎 = 𝑇 → ((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)))
468466fveq2d 6089 . . . . . . . . . . 11 (𝑎 = 𝑇 → (𝐻‘(𝑎 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑑𝑖))))
469468sneqd 4133 . . . . . . . . . 10 (𝑎 = 𝑇 → {(𝐻‘(𝑎 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑑𝑖)))})
470469imaeq2d 5369 . . . . . . . . 9 (𝑎 = 𝑇 → (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}))
471467, 470sseq12d 3593 . . . . . . . 8 (𝑎 = 𝑇 → (((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
472471ralbidv 2965 . . . . . . 7 (𝑎 = 𝑇 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))})))
473468mpteq2dv 4664 . . . . . . . . . 10 (𝑎 = 𝑇 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
474473rneqd 5258 . . . . . . . . 9 (𝑎 = 𝑇 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))))
475474fveq2d 6089 . . . . . . . 8 (𝑎 = 𝑇 → (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))))
476475eqeq1d 2608 . . . . . . 7 (𝑎 = 𝑇 → ((#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)))
477472, 476anbi12d 742 . . . . . 6 (𝑎 = 𝑇 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1))))
478 fveq1 6084 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝑑𝑖) = (𝑃𝑖))
479478oveq2d 6540 . . . . . . . . . 10 (𝑑 = 𝑃 → (𝑇 + (𝑑𝑖)) = (𝑇 + (𝑃𝑖)))
480479, 478oveq12d 6542 . . . . . . . . 9 (𝑑 = 𝑃 → ((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) = ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)))
481479fveq2d 6089 . . . . . . . . . . 11 (𝑑 = 𝑃 → (𝐻‘(𝑇 + (𝑑𝑖))) = (𝐻‘(𝑇 + (𝑃𝑖))))
482481sneqd 4133 . . . . . . . . . 10 (𝑑 = 𝑃 → {(𝐻‘(𝑇 + (𝑑𝑖)))} = {(𝐻‘(𝑇 + (𝑃𝑖)))})
483482imaeq2d 5369 . . . . . . . . 9 (𝑑 = 𝑃 → (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) = (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}))
484480, 483sseq12d 3593 . . . . . . . 8 (𝑑 = 𝑃 → (((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
485484ralbidv 2965 . . . . . . 7 (𝑑 = 𝑃 → (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ↔ ∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))})))
486481mpteq2dv 4664 . . . . . . . . . 10 (𝑑 = 𝑃 → (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
487486rneqd 5258 . . . . . . . . 9 (𝑑 = 𝑃 → ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖)))) = ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖)))))
488487fveq2d 6089 . . . . . . . 8 (𝑑 = 𝑃 → (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))))
489488eqeq1d 2608 . . . . . . 7 (𝑑 = 𝑃 → ((#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1) ↔ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1)))
490485, 489anbi12d 742 . . . . . 6 (𝑑 = 𝑃 → ((∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑑𝑖))))) = (𝑀 + 1)) ↔ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))))
491477, 490rspc2ev 3291 . . . . 5 ((𝑇 ∈ ℕ ∧ 𝑃 ∈ (ℕ ↑𝑚 (1...(𝑀 + 1))) ∧ (∀𝑖 ∈ (1...(𝑀 + 1))((𝑇 + (𝑃𝑖))(AP‘𝐾)(𝑃𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑇 + (𝑃𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑇 + (𝑃𝑖))))) = (𝑀 + 1))) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
49248, 73, 465, 491syl3anc 1317 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1)))
493 ovex 6552 . . . . 5 (1...(𝑊 · (2 · 𝑉))) ∈ V
49410adantr 479 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ)
495494nnnn0d 11195 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐾 ∈ ℕ0)
49639adantr 479 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝐻:(1...(𝑊 · (2 · 𝑉)))⟶𝑅)
49718adantr 479 . . . . . 6 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → 𝑀 ∈ ℕ)
498497peano2nnd 10881 . . . . 5 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (𝑀 + 1) ∈ ℕ)
499 eqid 2606 . . . . 5 (1...(𝑀 + 1)) = (1...(𝑀 + 1))
500493, 495, 496, 498, 499vdwpc 15465 . . . 4 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑𝑚 (1...(𝑀 + 1)))(∀𝑖 ∈ (1...(𝑀 + 1))((𝑎 + (𝑑𝑖))(AP‘𝐾)(𝑑𝑖)) ⊆ (𝐻 “ {(𝐻‘(𝑎 + (𝑑𝑖)))}) ∧ (#‘ran (𝑖 ∈ (1...(𝑀 + 1)) ↦ (𝐻‘(𝑎 + (𝑑𝑖))))) = (𝑀 + 1))))
501492, 500mpbird 245 . . 3 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → ⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻)
502501orcd 405 . 2 ((𝜑 ∧ ¬ (𝐺𝐵) ∈ ran 𝐽) → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
50337, 502pm2.61dan 827 1 (𝜑 → (⟨(𝑀 + 1), 𝐾⟩ PolyAP 𝐻 ∨ (𝐾 + 1) MonoAP 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  {cab 2592  wne 2776  wral 2892  wrex 2893  Vcvv 3169  cun 3534  wss 3536  c0 3870  ifcif 4032  {csn 4121  cop 4127   class class class wbr 4574  cmpt 4634  ccnv 5024  dom cdm 5025  ran crn 5026  cima 5028   Fn wfn 5782  wf 5783  ontowfo 5785  cfv 5787  (class class class)co 6524  𝑚 cmap 7718  Fincfn 7815  cc 9787  cr 9788  0cc0 9789  1c1 9790   + caddc 9792   · cmul 9794   < clt 9927  cle 9928  cmin 10114  cn 10864  2c2 10914  0cn0 11136  cz 11207  cuz 11516  ...cfz 12149  #chash 12931  APcvdwa 15450   MonoAP cvdwm 15451   PolyAP cvdwp 15452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rmo 2900  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-int 4402  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-1st 7033  df-2nd 7034  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-1o 7421  df-oadd 7425  df-er 7603  df-map 7720  df-en 7816  df-dom 7817  df-sdom 7818  df-fin 7819  df-card 8622  df-cda 8847  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-2 10923  df-n0 11137  df-z 11208  df-uz 11517  df-rp 11662  df-fz 12150  df-hash 12932  df-vdwap 15453  df-vdwmc 15454  df-vdwpc 15455
This theorem is referenced by:  vdwlem7  15472
  Copyright terms: Public domain W3C validator