MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaeq12d Structured version   Visualization version   GIF version

Theorem imaeq12d 5426
Description: Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
Hypotheses
Ref Expression
imaeq1d.1 (𝜑𝐴 = 𝐵)
imaeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
imaeq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem imaeq12d
StepHypRef Expression
1 imaeq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21imaeq1d 5424 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 imaeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43imaeq2d 5425 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2655 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  cima 5077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087
This theorem is referenced by:  csbima12  5442  predeq123  5640  vdwpc  15608  dmdprd  18318  isunit  18578  qtopval  21408  limciun  23564  ig1pval  23836  ispth  26488  qqhval  29797  eulerpartgbij  30212  orvcval  30297  ballotlemrval  30357  ballotlemrinv0  30372  ballotlemrinv  30373  mthmval  31177  bj-projeq  32624  itg2addnclem2  33091  islmodfg  37116  heeq12  37549
  Copyright terms: Public domain W3C validator