| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbov | GIF version | ||
| Description: Hypothesis builder for binary operation. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| hbov.1 | ⊢ F:(β → (γ → δ)) |
| hbov.2 | ⊢ A:β |
| hbov.3 | ⊢ B:α |
| hbov.4 | ⊢ C:γ |
| hbov.5 | ⊢ R⊧[(λx:α FB) = F] |
| hbov.6 | ⊢ R⊧[(λx:α AB) = A] |
| hbov.7 | ⊢ R⊧[(λx:α CB) = C] |
| Ref | Expression |
|---|---|
| hbov | ⊢ R⊧[(λx:α [AFC]B) = [AFC]] |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbov.5 | . . . 4 ⊢ R⊧[(λx:α FB) = F] | |
| 2 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
| 3 | 2 | trud 27 | . 2 ⊢ R⊧⊤ |
| 4 | hbov.1 | . . . 4 ⊢ F:(β → (γ → δ)) | |
| 5 | hbov.2 | . . . 4 ⊢ A:β | |
| 6 | hbov.4 | . . . 4 ⊢ C:γ | |
| 7 | 4, 5, 6 | wov 72 | . . 3 ⊢ [AFC]:δ |
| 8 | hbov.3 | . . 3 ⊢ B:α | |
| 9 | weq 41 | . . . 4 ⊢ = :(δ → (δ → ∗)) | |
| 10 | 4, 5 | wc 50 | . . . . 5 ⊢ (FA):(γ → δ) |
| 11 | 10, 6 | wc 50 | . . . 4 ⊢ ((FA)C):δ |
| 12 | 4, 5, 6 | df-ov 73 | . . . 4 ⊢ ⊤⊧(( = [AFC])((FA)C)) |
| 13 | 9, 7, 11, 12 | dfov2 75 | . . 3 ⊢ ⊤⊧[[AFC] = ((FA)C)] |
| 14 | hbov.6 | . . . . . 6 ⊢ R⊧[(λx:α AB) = A] | |
| 15 | 4, 5, 8, 1, 14 | hbc 110 | . . . . 5 ⊢ R⊧[(λx:α (FA)B) = (FA)] |
| 16 | hbov.7 | . . . . 5 ⊢ R⊧[(λx:α CB) = C] | |
| 17 | 10, 6, 8, 15, 16 | hbc 110 | . . . 4 ⊢ R⊧[(λx:α ((FA)C)B) = ((FA)C)] |
| 18 | wtru 43 | . . . 4 ⊢ ⊤:∗ | |
| 19 | 17, 18 | adantr 55 | . . 3 ⊢ (R, ⊤)⊧[(λx:α ((FA)C)B) = ((FA)C)] |
| 20 | 7, 8, 13, 19 | hbxfrf 107 | . 2 ⊢ (R, ⊤)⊧[(λx:α [AFC]B) = [AFC]] |
| 21 | 3, 20 | mpdan 35 | 1 ⊢ R⊧[(λx:α [AFC]B) = [AFC]] |
| Colors of variables: type var term |
| Syntax hints: → ht 2 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: clf 115 hbct 155 exlimdv 167 cbvf 179 leqf 181 exlimd 183 exmid 199 axrep 220 |
| Copyright terms: Public domain | W3C validator |