Step | Hyp | Ref
| Expression |
1 | | leqf.1 |
. . . . 5
⊢ A:β |
2 | 1 | wl 66 |
. . . 4
⊢
λx:α A:(α
→ β) |
3 | | wv 64 |
. . . 4
⊢ z:α:α |
4 | 2, 3 | wc 50 |
. . 3
⊢
(λx:α Az:α):β |
5 | 4 | wl 66 |
. 2
⊢
λz:α (λx:α
Az:α):(α → β) |
6 | | leqf.2 |
. . . . 5
⊢ R⊧[A =
B] |
7 | 6 | ax-cb1 29 |
. . . . . 6
⊢ R:∗ |
8 | 1 | beta 92 |
. . . . . 6
⊢
⊤⊧[(λx:α
Ax:α) =
A] |
9 | 7, 8 | a1i 28 |
. . . . 5
⊢ R⊧[(λx:α
Ax:α) =
A] |
10 | 1, 6 | eqtypi 78 |
. . . . . . 7
⊢ B:β |
11 | 10 | beta 92 |
. . . . . 6
⊢
⊤⊧[(λx:α
Bx:α) =
B] |
12 | 7, 11 | a1i 28 |
. . . . 5
⊢ R⊧[(λx:α
Bx:α) =
B] |
13 | 1, 6, 9, 12 | 3eqtr4i 96 |
. . . 4
⊢ R⊧[(λx:α
Ax:α) =
(λx:α Bx:α)] |
14 | | weq 41 |
. . . . 5
⊢ = :(β → (β → ∗)) |
15 | | wv 64 |
. . . . 5
⊢ y:α:α |
16 | 10 | wl 66 |
. . . . . 6
⊢
λx:α B:(α
→ β) |
17 | 16, 3 | wc 50 |
. . . . 5
⊢
(λx:α Bz:α):β |
18 | 14, 15 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:α =
y:α) = = ] |
19 | 1, 15 | ax-hbl1 103 |
. . . . . 6
⊢
⊤⊧[(λx:α
λx:α Ay:α) = λx:α
A] |
20 | 3, 15 | ax-17 105 |
. . . . . 6
⊢
⊤⊧[(λx:α
z:αy:α) =
z:α] |
21 | 2, 3, 15, 19, 20 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λx:α
(λx:α Az:α)y:α) =
(λx:α Az:α)] |
22 | 10, 15 | ax-hbl1 103 |
. . . . . 6
⊢
⊤⊧[(λx:α
λx:α By:α) = λx:α
B] |
23 | 16, 3, 15, 22, 20 | hbc 110 |
. . . . 5
⊢
⊤⊧[(λx:α
(λx:α Bz:α)y:α) =
(λx:α Bz:α)] |
24 | 14, 4, 15, 17, 18, 21, 23 | hbov 111 |
. . . 4
⊢
⊤⊧[(λx:α
[(λx:α Az:α) = (λx:α
Bz:α)]y:α) =
[(λx:α Az:α) = (λx:α
Bz:α)]] |
25 | | leqf.3 |
. . . 4
⊢
⊤⊧[(λx:α
Ry:α) =
R] |
26 | | wv 64 |
. . . . . 6
⊢ x:α:α |
27 | 2, 26 | wc 50 |
. . . . 5
⊢
(λx:α Ax:α):β |
28 | 16, 26 | wc 50 |
. . . . 5
⊢
(λx:α Bx:α):β |
29 | 26, 3 | weqi 76 |
. . . . . . 7
⊢ [x:α =
z:α]:∗ |
30 | 29 | id 25 |
. . . . . 6
⊢ [x:α =
z:α]⊧[x:α =
z:α] |
31 | 2, 26, 30 | ceq2 90 |
. . . . 5
⊢ [x:α =
z:α]⊧[(λx:α
Ax:α) =
(λx:α Az:α)] |
32 | 16, 26, 30 | ceq2 90 |
. . . . 5
⊢ [x:α =
z:α]⊧[(λx:α
Bx:α) =
(λx:α Bz:α)] |
33 | 14, 27, 28, 31, 32 | oveq12 100 |
. . . 4
⊢ [x:α =
z:α]⊧[[(λx:α
Ax:α) =
(λx:α Bx:α)] = [(λx:α
Az:α) =
(λx:α Bz:α)]] |
34 | 29, 7 | eqid 83 |
. . . 4
⊢ [x:α =
z:α]⊧[R = R] |
35 | 13, 24, 25, 33, 34 | ax-inst 113 |
. . 3
⊢ R⊧[(λx:α
Az:α) =
(λx:α Bz:α)] |
36 | 4, 35 | leq 91 |
. 2
⊢ R⊧[λz:α
(λx:α Az:α) = λz:α
(λx:α Bz:α)] |
37 | 2 | eta 178 |
. . 3
⊢
⊤⊧[λz:α
(λx:α Az:α) = λx:α
A] |
38 | 7, 37 | a1i 28 |
. 2
⊢ R⊧[λz:α
(λx:α Az:α) = λx:α
A] |
39 | 16 | eta 178 |
. . 3
⊢
⊤⊧[λz:α
(λx:α Bz:α) = λx:α
B] |
40 | 7, 39 | a1i 28 |
. 2
⊢ R⊧[λz:α
(λx:α Bz:α) = λx:α
B] |
41 | 5, 36, 38, 40 | 3eqtr3i 97 |
1
⊢ R⊧[λx:α
A = λx:α
B] |