Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > notval2 | GIF version |
Description: Another way two write ¬ A, the negation of A. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
notval2.1 | ⊢ A:∗ |
Ref | Expression |
---|---|
notval2 | ⊢ ⊤⊧[(¬ A) = [A = ⊥]] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wnot 138 | . . 3 ⊢ ¬ :(∗ → ∗) | |
2 | notval2.1 | . . 3 ⊢ A:∗ | |
3 | 1, 2 | wc 50 | . 2 ⊢ (¬ A):∗ |
4 | 2 | notval 145 | . 2 ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
5 | wfal 135 | . . . . 5 ⊢ ⊥:∗ | |
6 | wim 137 | . . . . . . 7 ⊢ ⇒ :(∗ → (∗ → ∗)) | |
7 | 6, 2, 5 | wov 72 | . . . . . 6 ⊢ [A ⇒ ⊥]:∗ |
8 | 7, 2 | simpr 23 | . . . . 5 ⊢ ([A ⇒ ⊥], A)⊧A |
9 | 7, 2 | simpl 22 | . . . . 5 ⊢ ([A ⇒ ⊥], A)⊧[A ⇒ ⊥] |
10 | 5, 8, 9 | mpd 156 | . . . 4 ⊢ ([A ⇒ ⊥], A)⊧⊥ |
11 | 2 | pm2.21 153 | . . . . 5 ⊢ ⊥⊧A |
12 | 11, 7 | adantl 56 | . . . 4 ⊢ ([A ⇒ ⊥], ⊥)⊧A |
13 | 10, 12 | ded 84 | . . 3 ⊢ [A ⇒ ⊥]⊧[A = ⊥] |
14 | 13 | ax-cb2 30 | . . . . . 6 ⊢ [A = ⊥]:∗ |
15 | 14, 2 | simpr 23 | . . . . 5 ⊢ ([A = ⊥], A)⊧A |
16 | 14, 2 | simpl 22 | . . . . 5 ⊢ ([A = ⊥], A)⊧[A = ⊥] |
17 | 15, 16 | mpbi 82 | . . . 4 ⊢ ([A = ⊥], A)⊧⊥ |
18 | 17 | ex 158 | . . 3 ⊢ [A = ⊥]⊧[A ⇒ ⊥] |
19 | 13, 18 | dedi 85 | . 2 ⊢ ⊤⊧[[A ⇒ ⊥] = [A = ⊥]] |
20 | 3, 4, 19 | eqtri 95 | 1 ⊢ ⊤⊧[(¬ A) = [A = ⊥]] |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 = ke 7 ⊤kt 8 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 118 ¬ tne 120 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |