Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > axgen | GIF version |
Description: Rule of Generalization. See e.g. Rule 2 of [Hamilton] p. 74. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
axgen.1 | ⊢ ⊤⊧R |
Ref | Expression |
---|---|
axgen | ⊢ ⊤⊧(∀λx:α R) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axgen.1 | . 2 ⊢ ⊤⊧R | |
2 | 1 | alrimiv 151 | 1 ⊢ ⊤⊧(∀λx:α R) |
Colors of variables: type var term |
Syntax hints: kc 5 λkl 6 ⊤kt 8 ⊧wffMMJ2 11 ∀tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |