Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  alrimiv GIF version

Theorem alrimiv 151
 Description: If one can prove R⊧A where R does not contain x, then A is true for all x. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypothesis
Ref Expression
alrimiv.1 RA
Assertion
Ref Expression
alrimiv R⊧(λx:α A)
Distinct variable groups:   x,R   α,x

Proof of Theorem alrimiv
StepHypRef Expression
1 alrimiv.1 . . . 4 RA
21ax-cb2 30 . . 3 A:∗
3 wtru 43 . . . 4 ⊤:∗
41eqtru 86 . . . 4 R⊧[⊤ = A]
53, 4eqcomi 79 . . 3 R⊧[A = ⊤]
62, 5leq 91 . 2 R⊧[λx:α A = λx:α ⊤]
71ax-cb1 29 . . 3 R:∗
82wl 66 . . . 4 λx:α A:(α → ∗)
98alval 142 . . 3 ⊤⊧[(λx:α A) = [λx:α A = λx:α ⊤]]
107, 9a1i 28 . 2 R⊧[(λx:α A) = [λx:α A = λx:α ⊤]]
116, 10mpbir 87 1 R⊧(λx:α A)
 Colors of variables: type var term Syntax hints:  ∗hb 3  kc 5  λkl 6   = ke 7  ⊤kt 8  [kbr 9  ⊧wffMMJ2 11  ∀tal 122 This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113 This theorem depends on definitions:  df-ov 73  df-al 126 This theorem is referenced by:  exlimdv2  166  ax4e  168  exlimd  183  axgen  210  ax10  213  ax11  214  axrep  220  axpow  221  axun  222
 Copyright terms: Public domain W3C validator