Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > alrimiv | GIF version |
Description: If one can prove R⊧A where R does not contain x, then A is true for all x. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
alrimiv.1 | ⊢ R⊧A |
Ref | Expression |
---|---|
alrimiv | ⊢ R⊧(∀λx:α A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimiv.1 | . . . 4 ⊢ R⊧A | |
2 | 1 | ax-cb2 30 | . . 3 ⊢ A:∗ |
3 | wtru 43 | . . . 4 ⊢ ⊤:∗ | |
4 | 1 | eqtru 86 | . . . 4 ⊢ R⊧[⊤ = A] |
5 | 3, 4 | eqcomi 79 | . . 3 ⊢ R⊧[A = ⊤] |
6 | 2, 5 | leq 91 | . 2 ⊢ R⊧[λx:α A = λx:α ⊤] |
7 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
8 | 2 | wl 66 | . . . 4 ⊢ λx:α A:(α → ∗) |
9 | 8 | alval 142 | . . 3 ⊢ ⊤⊧[(∀λx:α A) = [λx:α A = λx:α ⊤]] |
10 | 7, 9 | a1i 28 | . 2 ⊢ R⊧[(∀λx:α A) = [λx:α A = λx:α ⊤]] |
11 | 6, 10 | mpbir 87 | 1 ⊢ R⊧(∀λx:α A) |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 ∀tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 |
This theorem is referenced by: exlimdv2 166 ax4e 168 exlimd 183 axgen 210 ax10 213 ax11 214 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |