Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > mpbir | GIF version |
Description: Deduction from equality inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
mpbir.1 | ⊢ R⊧A |
mpbir.2 | ⊢ R⊧[B = A] |
Ref | Expression |
---|---|
mpbir | ⊢ R⊧B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir.1 | . 2 ⊢ R⊧A | |
2 | 1 | ax-cb2 30 | . . . 4 ⊢ A:∗ |
3 | mpbir.2 | . . . 4 ⊢ R⊧[B = A] | |
4 | 2, 3 | eqtypri 81 | . . 3 ⊢ B:∗ |
5 | 4, 3 | eqcomi 79 | . 2 ⊢ R⊧[A = B] |
6 | 1, 5 | mpbi 82 | 1 ⊢ R⊧B |
Colors of variables: type var term |
Syntax hints: ∗hb 3 = ke 7 [kbr 9 ⊧wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: ax4g 149 alrimiv 151 dfan2 154 mpd 156 ex 158 notnot1 160 con2d 161 olc 164 orc 165 ax4e 168 cla4ev 169 19.8a 170 alrimi 182 alnex 186 exmid 199 ax9 212 ax10 213 ax11 214 axrep 220 |
Copyright terms: Public domain | W3C validator |