Step | Hyp | Ref
| Expression |
1 | | wv 64 |
. . . . . 6
⊢ x:α:α |
2 | | ax9.1 |
. . . . . 6
⊢ A:α |
3 | 1, 2 | weqi 76 |
. . . . 5
⊢ [x:α =
A]:∗ |
4 | 3 | 19.8a 170 |
. . . 4
⊢ [x:α =
A]⊧(∃λx:α
[x:α = A]) |
5 | | wex 139 |
. . . . 5
⊢ ∃:((α
→ ∗) → ∗) |
6 | 3 | wl 66 |
. . . . 5
⊢
λx:α [x:α =
A]:(α → ∗) |
7 | | wv 64 |
. . . . 5
⊢ y:α:α |
8 | 5, 7 | ax-17 105 |
. . . . 5
⊢
⊤⊧[(λx:α ∃y:α) = ∃] |
9 | 3, 7 | ax-hbl1 103 |
. . . . 5
⊢
⊤⊧[(λx:α
λx:α [x:α =
A]y:α) =
λx:α [x:α =
A]] |
10 | 5, 6, 7, 8, 9 | hbc 110 |
. . . 4
⊢
⊤⊧[(λx:α (∃λx:α
[x:α = A])y:α) = (∃λx:α
[x:α = A])] |
11 | | wtru 43 |
. . . . 5
⊢
⊤:∗ |
12 | 11, 7 | ax-17 105 |
. . . 4
⊢
⊤⊧[(λx:α
⊤y:α) = ⊤] |
13 | 5, 6 | wc 50 |
. . . . 5
⊢ (∃λx:α
[x:α = A]):∗ |
14 | 3, 13 | eqid 83 |
. . . 4
⊢ [x:α =
A]⊧[(∃λx:α
[x:α = A])
= (∃λx:α
[x:α = A])] |
15 | 3 | id 25 |
. . . . . 6
⊢ [x:α =
A]⊧[x:α =
A] |
16 | 15 | eqtru 86 |
. . . . 5
⊢ [x:α =
A]⊧[⊤ = [x:α =
A]] |
17 | 11, 16 | eqcomi 79 |
. . . 4
⊢ [x:α =
A]⊧[[x:α =
A] = ⊤] |
18 | 4, 10, 12, 14, 17 | ax-inst 113 |
. . 3
⊢
⊤⊧(∃λx:α
[x:α = A]) |
19 | 13 | notnot1 160 |
. . 3
⊢ (∃λx:α
[x:α = A])⊧(¬ (¬ (∃λx:α
[x:α = A]))) |
20 | 18, 19 | syl 16 |
. 2
⊢
⊤⊧(¬ (¬ (∃λx:α
[x:α = A]))) |
21 | | wnot 138 |
. . 3
⊢ ¬ :(∗
→ ∗) |
22 | | wal 134 |
. . . 4
⊢ ∀:((α
→ ∗) → ∗) |
23 | 21, 3 | wc 50 |
. . . . 5
⊢ (¬ [x:α =
A]):∗ |
24 | 23 | wl 66 |
. . . 4
⊢
λx:α (¬ [x:α =
A]):(α → ∗) |
25 | 22, 24 | wc 50 |
. . 3
⊢ (∀λx:α (¬
[x:α = A])):∗ |
26 | 3 | alnex 186 |
. . 3
⊢
⊤⊧[(∀λx:α (¬
[x:α = A])) = (¬ (∃λx:α
[x:α = A]))] |
27 | 21, 25, 26 | ceq2 90 |
. 2
⊢
⊤⊧[(¬ (∀λx:α (¬
[x:α = A]))) = (¬ (¬ (∃λx:α
[x:α = A])))] |
28 | 20, 27 | mpbir 87 |
1
⊢
⊤⊧(¬ (∀λx:α (¬
[x:α = A]))) |