HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  oveq1 GIF version

Theorem oveq1 99
Description: Equality theorem for binary operation. (Contributed by Mario Carneiro, 7-Oct-2014.)
Hypotheses
Ref Expression
oveq.1 F:(α → (βγ))
oveq.2 A:α
oveq.3 B:β
oveq1.4 R⊧[A = C]
Assertion
Ref Expression
oveq1 R⊧[[AFB] = [CFB]]

Proof of Theorem oveq1
StepHypRef Expression
1 oveq.1 . 2 F:(α → (βγ))
2 oveq.2 . 2 A:α
3 oveq.3 . 2 B:β
4 oveq1.4 . . . 4 R⊧[A = C]
54ax-cb1 29 . . 3 R:∗
65, 1eqid 83 . 2 R⊧[F = F]
75, 3eqid 83 . 2 R⊧[B = B]
81, 2, 3, 6, 4, 7oveq123 98 1 R⊧[[AFB] = [CFB]]
Colors of variables: type var term
Syntax hints:  ht 2   = ke 7  [kbr 9  wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  alval  142  exval  143  euval  144  notval  145  imval  146  orval  147  anval  148  exlimdv  167  ax4e  168  exlimd  183  ac  197  exmid  199  ax10  213  axrep  220
  Copyright terms: Public domain W3C validator