Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wov | GIF version |
Description: Type of an infix operator. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wov.1 | ⊢ F:(α → (β → γ)) |
wov.2 | ⊢ A:α |
wov.3 | ⊢ B:β |
Ref | Expression |
---|---|
wov | ⊢ [AFB]:γ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wov.1 | . 2 ⊢ F:(α → (β → γ)) | |
2 | wov.2 | . 2 ⊢ A:α | |
3 | wov.3 | . 2 ⊢ B:β | |
4 | 1, 2, 3 | ax-wov 71 | 1 ⊢ [AFB]:γ |
Colors of variables: type var term |
Syntax hints: → ht 2 [kbr 9 wffMMJ2t 12 |
This theorem was proved from axioms: ax-wov 71 |
This theorem is referenced by: dfov2 75 weqi 76 oveq123 98 hbov 111 ovl 117 wan 136 wim 137 wnot 138 wex 139 wor 140 exval 143 notval 145 imval 146 orval 147 anval 148 dfan2 154 hbct 155 ex 158 notval2 159 ecase 163 olc 164 orc 165 exlimdv2 166 exlimdv 167 ax4e 168 eta 178 exlimd 183 ac 197 exmid 199 ax2 204 ax3 205 ax5 207 ax10 213 ax11 214 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |