Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > notnot1 | GIF version |
Description: One side of notnot 200. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
notval2.1 | ⊢ A:∗ |
Ref | Expression |
---|---|
notnot1 | ⊢ A⊧(¬ (¬ A)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wfal 135 | . . . 4 ⊢ ⊥:∗ | |
2 | notval2.1 | . . . . 5 ⊢ A:∗ | |
3 | wnot 138 | . . . . . 6 ⊢ ¬ :(∗ → ∗) | |
4 | 3, 2 | wc 50 | . . . . 5 ⊢ (¬ A):∗ |
5 | 2, 4 | simpl 22 | . . . 4 ⊢ (A, (¬ A))⊧A |
6 | 2, 4 | simpr 23 | . . . . 5 ⊢ (A, (¬ A))⊧(¬ A) |
7 | 5 | ax-cb1 29 | . . . . . 6 ⊢ (A, (¬ A)):∗ |
8 | 2 | notval 145 | . . . . . 6 ⊢ ⊤⊧[(¬ A) = [A ⇒ ⊥]] |
9 | 7, 8 | a1i 28 | . . . . 5 ⊢ (A, (¬ A))⊧[(¬ A) = [A ⇒ ⊥]] |
10 | 6, 9 | mpbi 82 | . . . 4 ⊢ (A, (¬ A))⊧[A ⇒ ⊥] |
11 | 1, 5, 10 | mpd 156 | . . 3 ⊢ (A, (¬ A))⊧⊥ |
12 | 11 | ex 158 | . 2 ⊢ A⊧[(¬ A) ⇒ ⊥] |
13 | 4 | notval 145 | . . 3 ⊢ ⊤⊧[(¬ (¬ A)) = [(¬ A) ⇒ ⊥]] |
14 | 2, 13 | a1i 28 | . 2 ⊢ A⊧[(¬ (¬ A)) = [(¬ A) ⇒ ⊥]] |
15 | 12, 14 | mpbir 87 | 1 ⊢ A⊧(¬ (¬ A)) |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 = ke 7 [kbr 9 kct 10 ⊧wffMMJ2 11 wffMMJ2t 12 ⊥tfal 118 ¬ tne 120 ⇒ tim 121 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: con3d 162 exnal1 187 notnot 200 ax9 212 |
Copyright terms: Public domain | W3C validator |