| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sbal1yz | Unicode version | ||
| Description: Lemma for proving sbal1 2021.  Same as sbal1 2021 but with an additional
       disjoint variable condition on  | 
| Ref | Expression | 
|---|---|
| sbal1yz | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dveeq2or 1830 | 
. . . . . 6
 | |
| 2 | equcom 1720 | 
. . . . . . . . 9
 | |
| 3 | 2 | nfbii 1487 | 
. . . . . . . 8
 | 
| 4 | 19.21t 1596 | 
. . . . . . . 8
 | |
| 5 | 3, 4 | sylbi 121 | 
. . . . . . 7
 | 
| 6 | 5 | orim2i 762 | 
. . . . . 6
 | 
| 7 | 1, 6 | ax-mp 5 | 
. . . . 5
 | 
| 8 | 7 | ori 724 | 
. . . 4
 | 
| 9 | 8 | albidv 1838 | 
. . 3
 | 
| 10 | alcom 1492 | 
. . . 4
 | |
| 11 | sb6 1901 | 
. . . . . 6
 | |
| 12 | 2 | imbi1i 238 | 
. . . . . . 7
 | 
| 13 | 12 | albii 1484 | 
. . . . . 6
 | 
| 14 | 11, 13 | bitri 184 | 
. . . . 5
 | 
| 15 | 14 | albii 1484 | 
. . . 4
 | 
| 16 | 10, 15 | bitr4i 187 | 
. . 3
 | 
| 17 | sb6 1901 | 
. . . 4
 | |
| 18 | 2 | imbi1i 238 | 
. . . . 5
 | 
| 19 | 18 | albii 1484 | 
. . . 4
 | 
| 20 | 17, 19 | bitr2i 185 | 
. . 3
 | 
| 21 | 9, 16, 20 | 3bitr3g 222 | 
. 2
 | 
| 22 | 21 | bicomd 141 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: sbal1 2021 | 
| Copyright terms: Public domain | W3C validator |