| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbal1yz | Unicode version | ||
| Description: Lemma for proving sbal1 2030. Same as sbal1 2030 but with an additional
disjoint variable condition on |
| Ref | Expression |
|---|---|
| sbal1yz |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveeq2or 1839 |
. . . . . 6
| |
| 2 | equcom 1729 |
. . . . . . . . 9
| |
| 3 | 2 | nfbii 1496 |
. . . . . . . 8
|
| 4 | 19.21t 1605 |
. . . . . . . 8
| |
| 5 | 3, 4 | sylbi 121 |
. . . . . . 7
|
| 6 | 5 | orim2i 763 |
. . . . . 6
|
| 7 | 1, 6 | ax-mp 5 |
. . . . 5
|
| 8 | 7 | ori 725 |
. . . 4
|
| 9 | 8 | albidv 1847 |
. . 3
|
| 10 | alcom 1501 |
. . . 4
| |
| 11 | sb6 1910 |
. . . . . 6
| |
| 12 | 2 | imbi1i 238 |
. . . . . . 7
|
| 13 | 12 | albii 1493 |
. . . . . 6
|
| 14 | 11, 13 | bitri 184 |
. . . . 5
|
| 15 | 14 | albii 1493 |
. . . 4
|
| 16 | 10, 15 | bitr4i 187 |
. . 3
|
| 17 | sb6 1910 |
. . . 4
| |
| 18 | 2 | imbi1i 238 |
. . . . 5
|
| 19 | 18 | albii 1493 |
. . . 4
|
| 20 | 17, 19 | bitr2i 185 |
. . 3
|
| 21 | 9, 16, 20 | 3bitr3g 222 |
. 2
|
| 22 | 21 | bicomd 141 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 |
| This theorem is referenced by: sbal1 2030 |
| Copyright terms: Public domain | W3C validator |