ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal1yz Unicode version

Theorem sbal1yz 1925
Description: Lemma for proving sbal1 1926. Same as sbal1 1926 but with an additional disjoint variable condition on 
y ,  z. (Contributed by Jim Kingdon, 23-Feb-2018.)
Assertion
Ref Expression
sbal1yz  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable groups:    x, y    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal1yz
StepHypRef Expression
1 dveeq2or 1744 . . . . . 6  |-  ( A. x  x  =  z  \/  F/ x  y  =  z )
2 equcom 1639 . . . . . . . . 9  |-  ( y  =  z  <->  z  =  y )
32nfbii 1407 . . . . . . . 8  |-  ( F/ x  y  =  z  <-> 
F/ x  z  =  y )
4 19.21t 1519 . . . . . . . 8  |-  ( F/ x  z  =  y  ->  ( A. x
( z  =  y  ->  ph )  <->  ( z  =  y  ->  A. x ph ) ) )
53, 4sylbi 119 . . . . . . 7  |-  ( F/ x  y  =  z  ->  ( A. x
( z  =  y  ->  ph )  <->  ( z  =  y  ->  A. x ph ) ) )
65orim2i 713 . . . . . 6  |-  ( ( A. x  x  =  z  \/  F/ x  y  =  z )  ->  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  ph )  <->  ( z  =  y  ->  A. x ph ) ) ) )
71, 6ax-mp 7 . . . . 5  |-  ( A. x  x  =  z  \/  ( A. x ( z  =  y  ->  ph )  <->  ( z  =  y  ->  A. x ph ) ) )
87ori 677 . . . 4  |-  ( -. 
A. x  x  =  z  ->  ( A. x ( z  =  y  ->  ph )  <->  ( z  =  y  ->  A. x ph ) ) )
98albidv 1752 . . 3  |-  ( -. 
A. x  x  =  z  ->  ( A. y A. x ( z  =  y  ->  ph )  <->  A. y ( z  =  y  ->  A. x ph ) ) )
10 alcom 1412 . . . 4  |-  ( A. y A. x ( z  =  y  ->  ph )  <->  A. x A. y ( z  =  y  ->  ph ) )
11 sb6 1814 . . . . . 6  |-  ( [ z  /  y ]
ph 
<-> 
A. y ( y  =  z  ->  ph )
)
122imbi1i 236 . . . . . . 7  |-  ( ( y  =  z  ->  ph )  <->  ( z  =  y  ->  ph ) )
1312albii 1404 . . . . . 6  |-  ( A. y ( y  =  z  ->  ph )  <->  A. y
( z  =  y  ->  ph ) )
1411, 13bitri 182 . . . . 5  |-  ( [ z  /  y ]
ph 
<-> 
A. y ( z  =  y  ->  ph )
)
1514albii 1404 . . . 4  |-  ( A. x [ z  /  y ] ph  <->  A. x A. y
( z  =  y  ->  ph ) )
1610, 15bitr4i 185 . . 3  |-  ( A. y A. x ( z  =  y  ->  ph )  <->  A. x [ z  / 
y ] ph )
17 sb6 1814 . . . 4  |-  ( [ z  /  y ] A. x ph  <->  A. y
( y  =  z  ->  A. x ph )
)
182imbi1i 236 . . . . 5  |-  ( ( y  =  z  ->  A. x ph )  <->  ( z  =  y  ->  A. x ph ) )
1918albii 1404 . . . 4  |-  ( A. y ( y  =  z  ->  A. x ph )  <->  A. y ( z  =  y  ->  A. x ph ) )
2017, 19bitr2i 183 . . 3  |-  ( A. y ( z  =  y  ->  A. x ph )  <->  [ z  /  y ] A. x ph )
219, 16, 203bitr3g 220 . 2  |-  ( -. 
A. x  x  =  z  ->  ( A. x [ z  /  y ] ph  <->  [ z  /  y ] A. x ph )
)
2221bicomd 139 1  |-  ( -. 
A. x  x  =  z  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103    \/ wo 664   A.wal 1287   F/wnf 1394   [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-nf 1395  df-sb 1693
This theorem is referenced by:  sbal1  1926
  Copyright terms: Public domain W3C validator