| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.21t | GIF version | ||
| Description: Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) | 
| Ref | Expression | 
|---|---|
| 19.21t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nf 1475 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | |
| 2 | 19.21ht 1595 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | |
| 3 | 1, 2 | sylbi 121 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 Ⅎwnf 1474 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: 19.21 1597 nfimd 1599 equs5or 1844 sbal1yz 2020 r19.21t 2572 ceqsalt 2789 sbciegft 3020 | 
| Copyright terms: Public domain | W3C validator |