| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.23h | GIF version | ||
| Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.23h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.23h | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23h.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | ax-gen 1473 | . 2 ⊢ ∀𝑥(𝜓 → ∀𝑥𝜓) |
| 3 | 19.23ht 1521 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1473 ax-ie2 1518 |
| This theorem is referenced by: alnex 1523 19.8a 1614 exlimih 1617 exlimdh 1620 nf2 1692 equs5or 1854 19.23v 1907 pm11.53 1920 |
| Copyright terms: Public domain | W3C validator |