| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.23h | GIF version | ||
| Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| 19.23h.1 | ⊢ (𝜓 → ∀𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| 19.23h | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.23h.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | ax-gen 1463 | . 2 ⊢ ∀𝑥(𝜓 → ∀𝑥𝜓) | 
| 3 | 19.23ht 1511 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 ∃wex 1506 | 
| This theorem was proved from axioms: ax-mp 5 ax-gen 1463 ax-ie2 1508 | 
| This theorem is referenced by: alnex 1513 19.8a 1604 exlimih 1607 exlimdh 1610 nf2 1682 equs5or 1844 19.23v 1897 pm11.53 1910 | 
| Copyright terms: Public domain | W3C validator |