| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.23h | GIF version | ||
| Description: Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| 19.23h.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| 19.23h | ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23h.1 | . . 3 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | 1 | ax-gen 1471 | . 2 ⊢ ∀𝑥(𝜓 → ∀𝑥𝜓) |
| 3 | 19.23ht 1519 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1370 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-gen 1471 ax-ie2 1516 |
| This theorem is referenced by: alnex 1521 19.8a 1612 exlimih 1615 exlimdh 1618 nf2 1690 equs5or 1852 19.23v 1905 pm11.53 1918 |
| Copyright terms: Public domain | W3C validator |