ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exlimdh Unicode version

Theorem exlimdh 1589
Description: Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jan-1997.)
Hypotheses
Ref Expression
exlimdh.1  |-  ( ph  ->  A. x ph )
exlimdh.2  |-  ( ch 
->  A. x ch )
exlimdh.3  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
exlimdh  |-  ( ph  ->  ( E. x ps 
->  ch ) )

Proof of Theorem exlimdh
StepHypRef Expression
1 exlimdh.1 . . 3  |-  ( ph  ->  A. x ph )
2 exlimdh.3 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2alrimih 1462 . 2  |-  ( ph  ->  A. x ( ps 
->  ch ) )
4 exlimdh.2 . . 3  |-  ( ch 
->  A. x ch )
5419.23h 1491 . 2  |-  ( A. x ( ps  ->  ch )  <->  ( E. x ps  ->  ch ) )
63, 5sylib 121 1  |-  ( ph  ->  ( E. x ps 
->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1440  ax-gen 1442  ax-ie2 1487
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exlimd  1590  exim  1592  exlimdv  1812  equs5  1822  cbvexdh  1919  exists2  2116
  Copyright terms: Public domain W3C validator