ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v Unicode version

Theorem 19.23v 1906
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1549 . 2  |-  ( ps 
->  A. x ps )
2119.23h 1521 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-gen 1472  ax-ie2 1517  ax-17 1549
This theorem is referenced by:  19.23vv  1907  2eu4  2147  gencbval  2821  euind  2960  reuind  2978  snssb  3766  unissb  3880  disjnim  4035  dftr2  4144  ssrelrel  4775  cotr  5064  dffun2  5281  fununi  5342  dff13  5837  acexmidlem2  5941
  Copyright terms: Public domain W3C validator