ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v Unicode version

Theorem 19.23v 1897
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1540 . 2  |-  ( ps 
->  A. x ps )
2119.23h 1512 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-gen 1463  ax-ie2 1508  ax-17 1540
This theorem is referenced by:  19.23vv  1898  2eu4  2138  gencbval  2812  euind  2951  reuind  2969  snssb  3756  unissb  3870  disjnim  4025  dftr2  4134  ssrelrel  4764  cotr  5052  dffun2  5269  fununi  5327  dff13  5818  acexmidlem2  5922
  Copyright terms: Public domain W3C validator