ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v Unicode version

Theorem 19.23v 1929
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1572 . 2  |-  ( ps 
->  A. x ps )
2119.23h 1544 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-gen 1495  ax-ie2 1540  ax-17 1572
This theorem is referenced by:  19.23vv  1930  2eu4  2171  gencbval  2849  euind  2990  reuind  3008  snssb  3801  unissb  3918  disjnim  4073  dftr2  4184  ssrelrel  4819  cotr  5110  dffun2  5328  fununi  5389  dff13  5892  acexmidlem2  5998
  Copyright terms: Public domain W3C validator