ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.23v Unicode version

Theorem 19.23v 1907
Description: Special case of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
19.23v  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem 19.23v
StepHypRef Expression
1 ax-17 1550 . 2  |-  ( ps 
->  A. x ps )
2119.23h 1522 1  |-  ( A. x ( ph  ->  ps )  <->  ( E. x ph  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   E.wex 1516
This theorem was proved from axioms:  ax-mp 5  ax-gen 1473  ax-ie2 1518  ax-17 1550
This theorem is referenced by:  19.23vv  1908  2eu4  2149  gencbval  2826  euind  2967  reuind  2985  snssb  3777  unissb  3894  disjnim  4049  dftr2  4160  ssrelrel  4793  cotr  5083  dffun2  5300  fununi  5361  dff13  5860  acexmidlem2  5964
  Copyright terms: Public domain W3C validator