| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| 2exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 |
. . 3
| |
| 2 | 1 | exbii 1627 |
. 2
|
| 3 | 2 | exbii 1627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1629 19.42vvvv 1936 3exdistr 1938 cbvex4v 1957 ee4anv 1961 ee8anv 1962 sbel2x 2025 2eu4 2146 rexcomf 2667 reean 2674 ceqsex3v 2814 ceqsex4v 2815 ceqsex8v 2817 copsexg 4287 opelopabsbALT 4303 opabm 4325 uniuni 4496 rabxp 4710 elxp3 4727 elvv 4735 elvvv 4736 rexiunxp 4818 elcnv2 4854 cnvuni 4862 coass 5198 fununi 5336 dfmpt3 5392 dfoprab2 5982 dmoprab 6016 rnoprab 6018 mpomptx 6026 resoprab 6031 ovi3 6073 ov6g 6074 oprabex3 6204 xpassen 6907 enq0enq 7526 enq0sym 7527 enq0tr 7529 ltresr 7934 axaddf 7963 axmulf 7964 |
| Copyright terms: Public domain | W3C validator |