Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 |
Ref | Expression |
---|---|
2exbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 | |
2 | 1 | exbii 1598 | . 2 |
3 | 2 | exbii 1598 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3exbii 1600 19.42vvvv 1906 3exdistr 1908 cbvex4v 1923 ee4anv 1927 ee8anv 1928 sbel2x 1991 2eu4 2112 rexcomf 2632 reean 2638 ceqsex3v 2772 ceqsex4v 2773 ceqsex8v 2775 copsexg 4227 opelopabsbALT 4242 opabm 4263 uniuni 4434 rabxp 4646 elxp3 4663 elvv 4671 elvvv 4672 rexiunxp 4751 elcnv2 4787 cnvuni 4795 coass 5127 fununi 5264 dfmpt3 5318 dfoprab2 5897 dmoprab 5931 rnoprab 5933 mpomptx 5941 resoprab 5946 ovi3 5986 ov6g 5987 oprabex3 6105 xpassen 6804 enq0enq 7380 enq0sym 7381 enq0tr 7383 ltresr 7788 axaddf 7817 axmulf 7818 |
Copyright terms: Public domain | W3C validator |