| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| 2exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 |
. . 3
| |
| 2 | 1 | exbii 1651 |
. 2
|
| 3 | 2 | exbii 1651 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1653 19.42vvvv 1960 3exdistr 1962 cbvex4v 1981 ee4anv 1985 ee8anv 1986 sbel2x 2049 2eu4 2171 rexcomf 2693 reean 2700 ceqsex3v 2843 ceqsex4v 2844 ceqsex8v 2846 copsexg 4329 opelopabsbALT 4346 opabm 4368 uniuni 4541 rabxp 4755 elxp3 4772 elvv 4780 elvvv 4781 rexiunxp 4863 elcnv2 4899 cnvuni 4907 coass 5246 fununi 5388 dfmpt3 5445 dfoprab2 6050 dmoprab 6084 rnoprab 6086 mpomptx 6094 resoprab 6099 ovi3 6141 ov6g 6142 oprabex3 6272 xpassen 6985 enq0enq 7614 enq0sym 7615 enq0tr 7617 ltresr 8022 axaddf 8051 axmulf 8052 |
| Copyright terms: Public domain | W3C validator |