| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| 2exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 |
. . 3
| |
| 2 | 1 | exbii 1619 |
. 2
|
| 3 | 2 | exbii 1619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1621 19.42vvvv 1928 3exdistr 1930 cbvex4v 1949 ee4anv 1953 ee8anv 1954 sbel2x 2017 2eu4 2138 rexcomf 2659 reean 2666 ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 copsexg 4278 opelopabsbALT 4294 opabm 4316 uniuni 4487 rabxp 4701 elxp3 4718 elvv 4726 elvvv 4727 rexiunxp 4809 elcnv2 4845 cnvuni 4853 coass 5189 fununi 5327 dfmpt3 5383 dfoprab2 5973 dmoprab 6007 rnoprab 6009 mpomptx 6017 resoprab 6022 ovi3 6064 ov6g 6065 oprabex3 6195 xpassen 6898 enq0enq 7515 enq0sym 7516 enq0tr 7518 ltresr 7923 axaddf 7952 axmulf 7953 |
| Copyright terms: Public domain | W3C validator |