Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version |
Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
exbii.1 |
Ref | Expression |
---|---|
2exbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbii.1 | . . 3 | |
2 | 1 | exbii 1598 | . 2 |
3 | 2 | exbii 1598 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3exbii 1600 19.42vvvv 1906 3exdistr 1908 cbvex4v 1923 ee4anv 1927 ee8anv 1928 sbel2x 1991 2eu4 2112 rexcomf 2632 reean 2638 ceqsex3v 2772 ceqsex4v 2773 ceqsex8v 2775 copsexg 4229 opelopabsbALT 4244 opabm 4265 uniuni 4436 rabxp 4648 elxp3 4665 elvv 4673 elvvv 4674 rexiunxp 4753 elcnv2 4789 cnvuni 4797 coass 5129 fununi 5266 dfmpt3 5320 dfoprab2 5900 dmoprab 5934 rnoprab 5936 mpomptx 5944 resoprab 5949 ovi3 5989 ov6g 5990 oprabex3 6108 xpassen 6808 enq0enq 7393 enq0sym 7394 enq0tr 7396 ltresr 7801 axaddf 7830 axmulf 7831 |
Copyright terms: Public domain | W3C validator |