| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| 2exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 |
. . 3
| |
| 2 | 1 | exbii 1619 |
. 2
|
| 3 | 2 | exbii 1619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1621 19.42vvvv 1928 3exdistr 1930 cbvex4v 1949 ee4anv 1953 ee8anv 1954 sbel2x 2017 2eu4 2138 rexcomf 2659 reean 2666 ceqsex3v 2806 ceqsex4v 2807 ceqsex8v 2809 copsexg 4277 opelopabsbALT 4293 opabm 4315 uniuni 4486 rabxp 4700 elxp3 4717 elvv 4725 elvvv 4726 rexiunxp 4808 elcnv2 4844 cnvuni 4852 coass 5188 fununi 5326 dfmpt3 5380 dfoprab2 5969 dmoprab 6003 rnoprab 6005 mpomptx 6013 resoprab 6018 ovi3 6060 ov6g 6061 oprabex3 6186 xpassen 6889 enq0enq 7498 enq0sym 7499 enq0tr 7501 ltresr 7906 axaddf 7935 axmulf 7936 |
| Copyright terms: Public domain | W3C validator |