| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| 2exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 |
. . 3
| |
| 2 | 1 | exbii 1627 |
. 2
|
| 3 | 2 | exbii 1627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1629 19.42vvvv 1936 3exdistr 1938 cbvex4v 1957 ee4anv 1961 ee8anv 1962 sbel2x 2025 2eu4 2146 rexcomf 2667 reean 2674 ceqsex3v 2814 ceqsex4v 2815 ceqsex8v 2817 copsexg 4287 opelopabsbALT 4304 opabm 4326 uniuni 4497 rabxp 4711 elxp3 4728 elvv 4736 elvvv 4737 rexiunxp 4819 elcnv2 4855 cnvuni 4863 coass 5200 fununi 5341 dfmpt3 5397 dfoprab2 5991 dmoprab 6025 rnoprab 6027 mpomptx 6035 resoprab 6040 ovi3 6082 ov6g 6083 oprabex3 6213 xpassen 6924 enq0enq 7543 enq0sym 7544 enq0tr 7546 ltresr 7951 axaddf 7980 axmulf 7981 |
| Copyright terms: Public domain | W3C validator |