| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2exbii | Unicode version | ||
| Description: Inference adding 2 existential quantifiers to both sides of an equivalence. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| 2exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbii.1 |
. . 3
| |
| 2 | 1 | exbii 1629 |
. 2
|
| 3 | 2 | exbii 1629 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3exbii 1631 19.42vvvv 1938 3exdistr 1940 cbvex4v 1959 ee4anv 1963 ee8anv 1964 sbel2x 2027 2eu4 2148 rexcomf 2669 reean 2676 ceqsex3v 2817 ceqsex4v 2818 ceqsex8v 2820 copsexg 4296 opelopabsbALT 4313 opabm 4335 uniuni 4506 rabxp 4720 elxp3 4737 elvv 4745 elvvv 4746 rexiunxp 4828 elcnv2 4864 cnvuni 4872 coass 5210 fununi 5351 dfmpt3 5408 dfoprab2 6005 dmoprab 6039 rnoprab 6041 mpomptx 6049 resoprab 6054 ovi3 6096 ov6g 6097 oprabex3 6227 xpassen 6940 enq0enq 7564 enq0sym 7565 enq0tr 7567 ltresr 7972 axaddf 8001 axmulf 8002 |
| Copyright terms: Public domain | W3C validator |