| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ceqsex8v | Unicode version | ||
| Description: Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011.) |
| Ref | Expression |
|---|---|
| ceqsex8v.1 |
|
| ceqsex8v.2 |
|
| ceqsex8v.3 |
|
| ceqsex8v.4 |
|
| ceqsex8v.5 |
|
| ceqsex8v.6 |
|
| ceqsex8v.7 |
|
| ceqsex8v.8 |
|
| ceqsex8v.9 |
|
| ceqsex8v.10 |
|
| ceqsex8v.11 |
|
| ceqsex8v.12 |
|
| ceqsex8v.13 |
|
| ceqsex8v.14 |
|
| ceqsex8v.15 |
|
| ceqsex8v.16 |
|
| Ref | Expression |
|---|---|
| ceqsex8v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42vvvv 1928 |
. . . . 5
| |
| 2 | 3anass 984 |
. . . . . . . 8
| |
| 3 | df-3an 982 |
. . . . . . . . 9
| |
| 4 | 3 | anbi2i 457 |
. . . . . . . 8
|
| 5 | 2, 4 | bitr4i 187 |
. . . . . . 7
|
| 6 | 5 | 2exbii 1620 |
. . . . . 6
|
| 7 | 6 | 2exbii 1620 |
. . . . 5
|
| 8 | df-3an 982 |
. . . . 5
| |
| 9 | 1, 7, 8 | 3bitr4i 212 |
. . . 4
|
| 10 | 9 | 2exbii 1620 |
. . 3
|
| 11 | 10 | 2exbii 1620 |
. 2
|
| 12 | ceqsex8v.1 |
. . . 4
| |
| 13 | ceqsex8v.2 |
. . . 4
| |
| 14 | ceqsex8v.3 |
. . . 4
| |
| 15 | ceqsex8v.4 |
. . . 4
| |
| 16 | ceqsex8v.9 |
. . . . . 6
| |
| 17 | 16 | 3anbi3d 1329 |
. . . . 5
|
| 18 | 17 | 4exbidv 1884 |
. . . 4
|
| 19 | ceqsex8v.10 |
. . . . . 6
| |
| 20 | 19 | 3anbi3d 1329 |
. . . . 5
|
| 21 | 20 | 4exbidv 1884 |
. . . 4
|
| 22 | ceqsex8v.11 |
. . . . . 6
| |
| 23 | 22 | 3anbi3d 1329 |
. . . . 5
|
| 24 | 23 | 4exbidv 1884 |
. . . 4
|
| 25 | ceqsex8v.12 |
. . . . . 6
| |
| 26 | 25 | 3anbi3d 1329 |
. . . . 5
|
| 27 | 26 | 4exbidv 1884 |
. . . 4
|
| 28 | 12, 13, 14, 15, 18, 21, 24, 27 | ceqsex4v 2807 |
. . 3
|
| 29 | ceqsex8v.5 |
. . . 4
| |
| 30 | ceqsex8v.6 |
. . . 4
| |
| 31 | ceqsex8v.7 |
. . . 4
| |
| 32 | ceqsex8v.8 |
. . . 4
| |
| 33 | ceqsex8v.13 |
. . . 4
| |
| 34 | ceqsex8v.14 |
. . . 4
| |
| 35 | ceqsex8v.15 |
. . . 4
| |
| 36 | ceqsex8v.16 |
. . . 4
| |
| 37 | 29, 30, 31, 32, 33, 34, 35, 36 | ceqsex4v 2807 |
. . 3
|
| 38 | 28, 37 | bitri 184 |
. 2
|
| 39 | 11, 38 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |