Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2albiim | Unicode version |
Description: Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.) |
Ref | Expression |
---|---|
2albiim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1464 | . . 3 | |
2 | 1 | albii 1447 | . 2 |
3 | 19.26 1458 | . 2 | |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: sbnf2 1958 eqopab2b 4234 eqrel 4668 eqrelrel 4680 eqoprab2b 5869 |
Copyright terms: Public domain | W3C validator |