ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqoprab2b Unicode version

Theorem eqoprab2b 5833
Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4205. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
eqoprab2b  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. <. x ,  y
>. ,  z >.  |  ps }  <->  A. x A. y A. z (
ph 
<->  ps ) )

Proof of Theorem eqoprab2b
StepHypRef Expression
1 ssoprab2b 5832 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps } 
<-> 
A. x A. y A. z ( ph  ->  ps ) )
2 ssoprab2b 5832 . . 3  |-  ( {
<. <. x ,  y
>. ,  z >.  |  ps }  C_  { <. <.
x ,  y >. ,  z >.  |  ph } 
<-> 
A. x A. y A. z ( ps  ->  ph ) )
31, 2anbi12i 456 . 2  |-  ( ( { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  /\  { <. <. x ,  y >. ,  z
>.  |  ps }  C_  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  <->  ( A. x A. y A. z
( ph  ->  ps )  /\  A. x A. y A. z ( ps  ->  ph ) ) )
4 eqss 3113 . 2  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. <. x ,  y
>. ,  z >.  |  ps }  <->  ( { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  { <. <.
x ,  y >. ,  z >.  |  ps }  /\  { <. <. x ,  y >. ,  z
>.  |  ps }  C_  {
<. <. x ,  y
>. ,  z >.  | 
ph } ) )
5 2albiim 1465 . . . 4  |-  ( A. y A. z ( ph  <->  ps )  <->  ( A. y A. z ( ph  ->  ps )  /\  A. y A. z ( ps  ->  ph ) ) )
65albii 1447 . . 3  |-  ( A. x A. y A. z
( ph  <->  ps )  <->  A. x
( A. y A. z ( ph  ->  ps )  /\  A. y A. z ( ps  ->  ph ) ) )
7 19.26 1458 . . 3  |-  ( A. x ( A. y A. z ( ph  ->  ps )  /\  A. y A. z ( ps  ->  ph ) )  <->  ( A. x A. y A. z
( ph  ->  ps )  /\  A. x A. y A. z ( ps  ->  ph ) ) )
86, 7bitri 183 . 2  |-  ( A. x A. y A. z
( ph  <->  ps )  <->  ( A. x A. y A. z
( ph  ->  ps )  /\  A. x A. y A. z ( ps  ->  ph ) ) )
93, 4, 83bitr4i 211 1  |-  ( {
<. <. x ,  y
>. ,  z >.  | 
ph }  =  { <. <. x ,  y
>. ,  z >.  |  ps }  <->  A. x A. y A. z (
ph 
<->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1330    = wceq 1332    C_ wss 3072   {coprab 5779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-setind 4456
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-v 2689  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-oprab 5782
This theorem is referenced by:  mpo2eqb  5884
  Copyright terms: Public domain W3C validator