| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqoprab2b | Unicode version | ||
| Description: Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 4314. (Contributed by Mario Carneiro, 4-Jan-2017.) | 
| Ref | Expression | 
|---|---|
| eqoprab2b | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssoprab2b 5979 | 
. . 3
 | |
| 2 | ssoprab2b 5979 | 
. . 3
 | |
| 3 | 1, 2 | anbi12i 460 | 
. 2
 | 
| 4 | eqss 3198 | 
. 2
 | |
| 5 | 2albiim 1502 | 
. . . 4
 | |
| 6 | 5 | albii 1484 | 
. . 3
 | 
| 7 | 19.26 1495 | 
. . 3
 | |
| 8 | 6, 7 | bitri 184 | 
. 2
 | 
| 9 | 3, 4, 8 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-oprab 5926 | 
| This theorem is referenced by: mpo2eqb 6032 | 
| Copyright terms: Public domain | W3C validator |