Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albiim | Unicode version |
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
albiim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 386 | . . 3 | |
2 | 1 | albii 1450 | . 2 |
3 | 19.26 1461 | . 2 | |
4 | 2, 3 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2albiim 1468 hbbid 1555 equveli 1739 spsbbi 1824 eu1 2031 eqss 3143 ssext 4182 |
Copyright terms: Public domain | W3C validator |