ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  albiim Unicode version

Theorem albiim 1487
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
albiim  |-  ( A. x ( ph  <->  ps )  <->  ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ph ) ) )

Proof of Theorem albiim
StepHypRef Expression
1 dfbi2 388 . . 3  |-  ( (
ph 
<->  ps )  <->  ( ( ph  ->  ps )  /\  ( ps  ->  ph )
) )
21albii 1470 . 2  |-  ( A. x ( ph  <->  ps )  <->  A. x ( ( ph  ->  ps )  /\  ( ps  ->  ph ) ) )
3 19.26 1481 . 2  |-  ( A. x ( ( ph  ->  ps )  /\  ( ps  ->  ph ) )  <->  ( A. x ( ph  ->  ps )  /\  A. x
( ps  ->  ph )
) )
42, 3bitri 184 1  |-  ( A. x ( ph  <->  ps )  <->  ( A. x ( ph  ->  ps )  /\  A. x ( ps  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  2albiim  1488  hbbid  1575  equveli  1759  spsbbi  1844  eu1  2051  eqss  3172  ssext  4223
  Copyright terms: Public domain W3C validator